• Title/Summary/Keyword: wavemaking resistance

Search Result 11, Processing Time 0.023 seconds

Estimation of Ship Resistance by Statistical Analysis and its Application to Hull Form Modification (통계해석에 의한 저항 추정 및 선형 개량)

  • S.W.,Hong;K.J.,Cho;D.S.,Yun;E.C.,Kim;W.C.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.28-38
    • /
    • 1988
  • This paper describes the statistical analysis method of predicting the ship resistance. The equation for the wavemaking resistance coefficient is derived as the principal dimensions and sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the resistance test results. The equation for the form factor is derived by purely regression analysis of the principal dimensions, sectional area coefficients and resistance test results. Also, it is shown that the wavemaking resistance can be minimize by varying the sectional area curve without changing the principal dimensions of the ship. This methods were applied to the resistance prediction of a bulk carrier. And the, the modified hull form with minimum wavemaking resistance was obtained and the reduction of effective power was confirmed by the resistance test.

  • PDF

Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design (선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用))

  • Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

Interaction Between the Viscous and Wavemaking Component Resistance (점성저항과 조파 저항 성분의 상호작용)

  • Kim, In-Chull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.125-129
    • /
    • 1983
  • It is customary to assume that the resistance of a jull at uniform speed may be regarded as the sum of viscous and wavemaking component resistance, or C sub(i)=C sub(v)+C sub(w), where C sub(v) is regarded as a function of Reynolds Number R and C sub(w) a function of Froude Number F. Formulae have been obtained for ∂C sub(w)/∂R, ∂C sub(v)/∂F which may be relevant in seeking theoretical grounds for possible interaction between viscous and wavemaking component resistances. The values of ∂C sub(w)/∂R are small. In general they are smaller than corresponding values of ∂C sub(v)/∂R. But although these values are small it does not follow that they are entirely negligible. The Froude assumption that the rate of change of C sub(w) with R is zero must bel regarded as incorrect.

  • PDF

A Study on the Optimal Forebody Forms for Minimum Wave Resistance (최소조파 저항성능을 갖는 최적 선수형상에 관한 연구)

  • Sung-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.28-39
    • /
    • 1991
  • A study on the optimization problems to find forebode shapes with minimum wavemaking and frictional resistance was performed. The afterbody was fixed as a given hull and only forebode offsets were treated as design variables. Design variables were divided into the offsets of given hull and small variation from them. For the wavemaking resistance calculation, Neumann-Kelvin theory was applied to the given hull and thin ship theory was applied to the small variation. ITTC 1957 model-ship correlation line was used for the calculation of frictional resistance. Hull surface was represented mathmatically using shape function. As object function, such as wavemaking and frictional rersistance, was quadratic form of offsets and constraints linear, quadratic programing problem could be constructed. The complementary pivot method was used to find the soulution of the quadratic programing problem. Calculations were perfomed for the Series 60 $C_{B}$=0.6. at Fn=0.289. A realistic hull form could be obtained by using proper constraints. From the results of calculation for the Series 60 $C_{B}$=0.6, it was concluded that present method gave optimal shape of bulbous bow showing a slight improvement in the wave resistance performance at design speed Fn=0.289 compared with the results from the ship theory only.

  • PDF

The Prediction of Ship's Powering Performance Using Statistical Analysis and Theoretical Formulation (통계해석과 이론식을 이용한 저항추진성능 추정)

  • Eun-Chan,Kim;Sung-Wan,Hong;Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.14-26
    • /
    • 1989
  • This paper describes the method of statistical analysis and its programs for predicting the ship's powering performance. The equation for the wavemaking resistance coefficient is derived as the sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the model test results. The equations for the form factor, wake franction and thrust deduction fraction are derived by purely regression analysis of the principal dimensions, sectional area coefficients and model test results. The statistical analyses are performed using the various descriptive statistic and stepwise regression analysis techniques. The powering performance prognosis program is developed to cover the prediction of resistance coefficients, propulsive coefficients, propeller open-water efficiency and various scale effect corrections.

  • PDF

Calculation of Wavemaking Resistance of High Speed Catamaran Using a Panel Method

  • Lee, Seung-Joon;Joo, Young-Ryeol
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a panel method is described, which cart solve the flow field round a surface-piercing body that experiences lift and wave resistance. As the body boundary condition, a Dirichlet type is employed, and as the free surface boundary condition the Poisson type is implemented, while in its discretization Dawson's 4-point upwind difference scheme is utilized, and as the Kutta condition a Morino-Kuo type is chosen. As to the type of singularity, source panels are distributed on the free surface, and source and dipole panels on the body surface, and dipole panels on the wake surface. For a sample run, a catamaran of the parabolic Wigley hull is chosen, for which experimental data are available, and the predictions by the numerical means and by the experiment are compared for a wide range of parameters.

  • PDF

Numerical Analysis on the Wave Resistance by the Theory of Slender Ships (세장선 이론에 의한 조파저항의 수치 해석)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.111-116
    • /
    • 1987
  • The accurate prediction of the ship wave resistance is very important to design ships which operate satisfactorily in a wave environment. Thus, work should continue on development and validation of methods to compute ship wave patterns and wave resistance. Research efforts to improve the prediction of ship waves and wavemaking resistance are categorized in two major areas. First is the development of higher-order theories to take account of the nonlinear effect of the free surface condition and improved analytical treatment of the body boundary condition. Second is the development of direct numerical methods aimed at solving body and free-surface boundary conditions as accurately as possible. A new formulation of the slender body theory for a ship with constant speed is developed by Maruo. It is quite different from the existing slender ship theory by Vossers, Maruo and Tuck. It may be regarded as a substitute for the Neumann-Kelvin approximation. In present work, the method of asymptotic expansion of the Kelvin source is applied to obtain a new wave resistance formulation in fluid of finite depth. It takes a simple form than existing theory.

  • PDF

Desigh and Wavemaking Effect of Bulvous Bow Ship by Stream Line Tracing Method (유선추적법(流線追跡法)에 의(依)한 구상선수선형(球狀船首船型)의 계획(計劃) 및 조파효과(造波效果))

  • S.W.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.2
    • /
    • pp.19-28
    • /
    • 1973
  • This paper deals with a problem for determining the bulbous bow ship from which pertains to the study of the theoretical ship form planing method. In this paper has been determined the bulbous bow ship form which is a similar in geometric particulars with the conventional liner ship G.T.10, 000 by adopting the variable method for finding the optimum ship form by A.Y.C. Lee and the streamline tracing method by T. Inui and P.C. Pien. Each resistance performance is examined by the towing test and is compared with one another. The followings are the outcome of this study: Among the 5 type models, the bulbous bow ship form M.S. B 1120 is the most excellent for the resistance performance. The effect for the wave resistance is very sharp according to the difference of the bottom flattening of theoretical ship form. The optimum value of the bulbous bow for wave resistance can be obtained by the variable method mentioned above, and for the series of(Main hull+Bulb)opt., ${\alpha}=75/25$, the value is $f{\approx}0.11$.

  • PDF

An Experimental Study on the Wave-Cancelling Effects of Large Bulbous Bow on the Passenger Coaster (연안객선(沿岸客船)에 있어서 대형구상선수(大型球狀船首)가 조파저항감소(造波抵抗減少)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Zae-Geun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-34
    • /
    • 1967
  • The wave-cancelling effects of a large bulbous bow on the coastal passenger boat have been investigated in deep and shallow water. The following characteristics have been cleared through resistance tests with the model of the Korea standard type coastal passenger vessel(LWL=25.8m, B=5.5m, T=1.65m) equipped with large bulbous bows of various sizes. (1) Over the range of Froude Number 0.30, the wavemaking resistance coefficients decrease 30% or more. (2) The optimum location of bulb center is around 8% L from F.P. (3) On the 120 G.T. passenger coaster which has a speed corresponding to Froude Number 0.34, the most advantageous bulb is the one whose $a_0/L$ is about 0.28. When the speed is up, the bulb radius should be increased accordingly. (4) The large bulbous bows are effective in shallow water to a water depth of H/T=2.0. (5) Tendency to the increase in the resistance of the hull with large bulbous bow in the shallow water is generally smaller than that of the hull without bulb.

  • PDF

Numerical Analysis on the Wave Resistance by the Theory of Slender Ships (세장선 이론에 의한 조파저항의 수치 해석)

  • Kim, In Chull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.1-1
    • /
    • 1987
  • The accurate prediction of the ship wave resistance is very important to design ships which operate satisfactorily in a wave environment. Thus, work should continue on development and validation of methods to compute ship wave patterns and wave resistance. Research efforts to improve the prediction of ship waves and wavemaking resistance are categorized in two major areas. First is the development of higher-order theories to take account of the nonlinear effect of the free surface condition and improved analytical treatment of the body boundary condition. Second is the development of direct numerical methods aimed at solving body and free-surface boundary conditions as accurately as possible. A new formulation of the slender body theory for a ship with constant speed is developed by Maruo. It is quite different from the existing slender ship theory by Vossers, Maruo and Tuck. It may be regarded as a substitute for the Neumann-Kelvin approximation. In present work, the method of asymptotic expansion of the Kelvin source is applied to obtain a new wave resistance formulation in fluid of finite depth. It takes a simple form than existing theory.