• Title/Summary/Keyword: wear rate proportional factor

Search Result 10, Processing Time 0.033 seconds

A Study on Optimal Wear Design for a Gerotor Pump (제로터 펌프의 마멸 최적설계에 관한 연구)

  • Kwon, Soon-Man;Nam, Hyoung-Chul;Lu, Lei;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • A disadvantage in the design of gerotor pump is a lack of parts that can be adjusted to compensate for wear in the rotor set, and as a consequence, it causes a sharp reduction of efficiency. In this paper, an attempt has been made to reduce the wear rate between the rotors of a gerotor pump. To do this, floating genetic algorithm (FGA) is used as an optimization technique for minimizing the wear rate proportional factor (WRPF). The result shows that the wear rate can be reduced considerably, e.g. approximately 8% in this paper, throughout the optimization using FGA.

Optimal Wear Design for a Hypotrochoidal Gear Pump without Hydrodynamic Effect (하이포 트로코이드 기어 펌프의 건식 마멸 최적설계)

  • Kwon, Soon-Man;Sim, Mu-Yong;Nam, Hyoung-Chul;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1383-1392
    • /
    • 2009
  • A disadvantage in the design of a hypotrochoidal gear pump as in a gerotor pump is a lack of parts that can be adjusted to compensate for wear in the rotor set, and as a consequence, it causes a sharp reduction of volumetric efficiency. In this paper, an attempt has been made to reduce the wear rate between the rotors of a hypotrochoidal gear pump. Using the knowledge of shape design on the rotors, the contact stresses without hydrodynamic effect between the rotors' teeth are evaluated through the calculation of the Hertzian contact stress. Based on the above result and the sliding velocity between the rotors, a genetic algorithm (GA) is used as an optimization technique for minimizing the wear rate proportional factor (WRPF). The result shows that the wear rate or the WRPF can be reduced considerably, e.g. approximately 12.8% in this paper, throughout the optimization using GA.

Wear Behavior of Silica filled Styrene-Butadiene Rubber: A Comparative Study Between the Blade-Type and Akron-Type Abrader

  • Gi-Bbeum Lee;Dongwon Kim;Seowon Lee;Seonhong Kim;Myung-Su Ahn;Bismark Mensah;Changwoon Nah
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of the particle size and silica structure on the wear behavior of Silica/Styrene-Butadiene Rubber (SBR) compounds was investigated using a blade-type abrader and the findings were compared with those obtained with an Akron abrader. The compensated characteristic parameter (Ψc), which was the contributory factor of the combined effect of the particle size and filler structure, was introduced. This parameter was found to exhibit a linear relationship with the Young's modulus. The Young's modulus correlated more with Ψc than the uncompensated characteristic parameter (Ψ) modeled for carbon black. The wear rate and volume loss measured using a blade-type abrader and Akron abrader were respectively observed to be inversely proportional to Ψc, that is, the wear resistance of Silica/SBR compound improved as the particle size became smaller and the silica structure became intricate. The coefficient of determination (R2) obtained from the linear relationship between Ψc and wear rate was higher than those between Ψc and volume loss for the Silica/SBR compound. Thus, the blade-type abrader exhibited high potential to be used for accurately evaluating the effect of particle size and structural properties of silica on the wear behavior of SBR compounds.

Effect of Hollow Composite Yarn Characteristics to the Comfort Property of Fabrics for High Emotional Garment (중공 복합사 특성이 고감성 의류용 직물의 쾌적성에 미치는 영향)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.17 no.4
    • /
    • pp.71-78
    • /
    • 2014
  • Composite draw textured yarns(DTY) and air jet textured yarns(ATY) with hollow PET filament have been used for making high emotional fabrics including light weight sports wear garments. This study investigated effect of hollow composite yarns and fabric structural parameters to the comfort properties related to the moisture and thermal transport phenomena for the composite fabrics made of DTY and ATY with hollow PET filament. Wicking property of hollow composite fabric was superior at the high pore size fabric and was not influenced by fabric cover factor. Wicking property of the fabric with ATY was better than that of the fabric with DTY. On the other hand, drying rate of fine pore sized fabric was shorter than that of large pore sized fabric and drying rate of high multi yarn fabric with low cover factor and small pore size was superior than that of hollow composite fabric. The pore size of the fabric was dominant factor in the air permeability and thermal conductivity of hollow composite fabric. High pore sized fabric showed high air permeability and thermal conductivity of hollow composite fabric was nonlinearly inversely proportional to pore size of the fabric.