• Title/Summary/Keyword: wedge function

Search Result 97, Processing Time 0.03 seconds

Analysis of Scattering Characteristics by the Double Impedence Wedge (두 개의 임피던스 ?지에 의한 산란 특성 해석)

  • 서용원;장정민이민수이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.363-366
    • /
    • 1998
  • High frequency scattered fields by a double impedence wedge are computed. In the procedure of the computation, arbitrary impedence faces and wedge angles are considered. The diffraction coefficients for the single, double and triple diffraction mechanism are founded. The second-order and third-order diffracted fields are approximated via the extended spectral ray method and the modified Pauli-Clemmow method of the steepest descent. The maliuzhinets function which is very difficult to obtain accurate value is approximated by the Volakis's asymtotic expression. Numerical computations are performed for the various wedge angles and surface impedence values.

  • PDF

FUZZY LINEARITY OF THE FUZZY INTEGRAL

  • Kim, Mi Hye;Shin, Seung Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • We introduce a concept of fuzzy linearity: A function $F:L^0(X){\rightarrow}\mathbb{R}$ is fuzzy linear if $F[({\alpha}{\wedge}f){\vee}(b{\wedge}g)]=[a{\wedge}F(f)]{\vee}[b{\wedge}F(g)]$ for $f,g{\in}L^0(X)$ and a, b > 0. We show that a fuzzy integral is fuzzy linear if the measure is fuzzy c-additive.

  • PDF

Comparison of Wedge Factors of Dynamic Wedge and Physical Wedge (기능상쐐기와 물질쐐기의 쐐기인수의 비교)

  • Kim Jae Sung;Kang Wee-Saing
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Even though the wedge factor was defined by ICRU, RTPS uses other definition different from the wedge factor to consider the wedge effect to correct dose. Because the factors with different concept are defined in a very different way, replacement of different factor could make severe error of dose and is unacceptable because their values are very different from each other. Radiotherapy machine installed in department includes physical wedges and function of dynamic wedge by upper jaws, and Eclipse and Pinnacle$^{3}$ such as RTPS are used. The wedge factors, relative wedge output factors and wedge field output factors of physical wedges and dynamic wedges were measured by an ionization chamber in water phantom. They are analyzed and compared in according to wedge position, field size, wedge angle, X-ray quality, measurement condition. Wedge factor, relative wedge output factors and wedge field output factors of dynamic wedges comparing physical wedges have an effect of several factors. Main factors effecting to the factors of dynamic wedges were field size and wedge angle. Beam quality of X-ray introduces a few effect to the factors. Because the factors related to wedge and defined with different concepts are different from each other, to reduce dose error it should be input by values proper to RTPS.

  • PDF

Noncentral F-Distribution for an M-ary Phase Shift Keying Wedge-Shaped Region

  • Kim, Jung-Su;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.345-347
    • /
    • 2009
  • This letter presents an alternative analytical expression for computing the probability of an M-ary phase shift keying (MPSK) wedge-shaped region in an additive white Gaussian noise channel. The expression is represented by the cumulative distribution function of known noncentral F-distribution. Computer simulation results demonstrate the validity of our analytical expression for the exact computation of the symbol error probability of an MPSK system with phase error.

  • PDF

FHD Flexible Endoscopy Design Using Wedge Prism (Wedge Prism을 이용한 FHD급 연성 내시경 광학계 설계)

  • Park, Sung-Woo;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.295-302
    • /
    • 2022
  • In this paper, a wedge prism application method was studied to design a full-high-definition (FHD)-class high-resolution flexible endoscope. In the case of the conventional flexible endoscope optical system, the F number is made large or a liquid lens is applied to obtain the same imaging performance in a wide depth of field. However, there is a problem in that the diameter of the optical system increases because an additional light guide and equipment are required. To solve this problem, two wedge prisms were applied to the flexible endoscope optical system to adjust the image distance for each object distance. First, two wedge prisms were symmetrically placed on the designed endoscopic optical system. An image distance satisfying the target imaging performance according to each objective distance was derived. Next, the wedge prism decenter value for controlling the image distance was derived. By combining these two data, a wedge prism decenter value that satisfied the target imaging performance at each object distance was applied in multi configurations. As a result of the optimal design applied with the wedge prism, a target imaging performance of more than 20% of the modulation transfer function for a resolution of 178 cycles/mm was satisfied in the entire depth of field of 100 mm-7 mm.

Sensitivity Analysis in Latent Root Regression

  • Shin, Jae-Kyoung;Tomoyuki Tarumi;Yutaka Tanaka
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.102-111
    • /
    • 1994
  • We Propose a method of sensitivity analysis in latent root regression analysis (LRRA). For this purpose we derive the quantities ${\beta\limits^\wedge \;_{LRR}}^{(1)}$, which correspond to the theoretical influence function $I(x, y \;;\;\beta\limits^\wedge \;_{LRR})$ for the regression coefficient ${\beta\limits^\wedge}_{LRR}$ based on LRRA. We give a numerical example for illustration and also investigate numerically the relationship between the estimated values of ${\beta\limits^\wedge \;_{LRR}}^{(1)}$ with the values of the other measures called sample influence curve(SIC) based on the recomputation for the data with a single observation deleted. We also discuss the comparision among the results of LRRA, ordinary least square regression analysis (OLSRA) and ridge regression analysis(RRA).

  • PDF

Fast ab/adduction Rate of Articulation Valves in Normal Adults (정상 성인의 조음밸브에 대한 내${\cdot}$외전 비율)

  • Park, Hee-Jun;Han, Ji-Yeon
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.149-151
    • /
    • 2007
  • This study was designed to investigate fast ab/adduction rate of articulation valves in normal adults. The measurement of fast ab/aduction rate has traditionally been used for assessment, diagnosis and therapy in patients who suffered from dysarthria, functional articulation disorders or apraxia of speech. Fast ab/adduction rate shows the documented structural and physiological changes in the central nervous system and the peripheral components of oral and speech production mechanism. Fast ab/adduction rates were obtained from 20 normal subjects by producing the repetition of vocal function (/ihi/), tongue function (/t${\wedge}$/), velopharyngeal function (/m/), and labial function (/p${\wedge}$/). The Aerophone II was used for data recording. The results of finding as follows: average fast ab/adduction rates were vocal function(6.21cps), tongue function(7.42cps), velopharyngeal function(5.23cps), labial function (6.93cps). The results of this study are guidelines of normal diadochokinetic rates. In addition, they can indicate the severity of diseases and evaluation of treatment.

  • PDF

The Dependence of the Wedge Factor with the Variation of High Energy Photon Beam Fluences (고에너지 광자선의 선속 변화에 따른 쐬기인자의 의존성)

  • 오영기;윤상모;김재철;박인규;김성규
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • For wedged photon beams, the variation of the wedge factor with field size was reported by several authors. However, until now such variation with field size had not been explained quantitatively. Therefore, the variation of the wedge factor was investigated by measuring outputs with field sizes increasing from 4 cm $\times$ 4 cm to 25 cm $\times$ 25 cm for open and wedged 6 and 10MV X-ray beams. The relative outputs for wedged fields to 10 cm $\times$ 10 cm have been obtained. The results show the Increase of the wedge factor caused by the change in fluence of high energy Photon beam with field size, up to 8.0% for KD77-6MV X-ray beam. This increase could be explained as a linear function of the irradiated wedge volume except small field size up to about 10 cm. In the cases of the narrow rectangular beam parallel to the wedge direction, the wedge factor decreases slightly with increasing field size up to about 10-15 cm due to a relatively reduced photon fluence from the change of the wedge thickness. We could explain the causes of a wedge factor variation with field size as the fluences of primary photon passed throughout the wedge, contributing to the dose at the central beam axis and that the fluences were affected by the gradient of the wedge with the change of field size. For clinical use, the formula developed to describe the wedge factor variation with field size has been corrected.

  • PDF

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

One-Sided Nondestructive Evaluation of Back-Side Wedge By Using Ultrasonic Sound (초음파를 이용한 배면웨지의 일방향 비파괴 특성평가)

  • Jeong, Jong-An;Hsu, David K.;Im, Kwang-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.773-777
    • /
    • 2011
  • Conventional ultrasonic thickness measurement is to be considered as the assumption that the ultrasonic velocity is known. In actual applications the velocity is often not well known and access is often limited to one side. This paper aims at determining the ultrasonic velocity and thickness of plates with parallel or wedged surfaces using contact measurements made on one surface only. For wedged plates the thickness at one point and the wedge angle are determined. Equations are used for determining the ultrasonic velocity, thickness and wedge angle of the plate based on the times-of-flight measured by two contact transducers coupled to one surface. The time-of-flight of the obliquely reflected longitudinal wave echo was measured as a function of the separation between the two transducers. In addition, a simulation was made for comparing the experimental data and a FEM image. Experiments and simulations were performed on flat and wedged plates of aluminium materials; the calculated results for the unknown quantities are generally agreed with them to some degree.