• Title/Summary/Keyword: westergaard

Search Result 18, Processing Time 0.028 seconds

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

Study of modified Westergaard formula based on dynamic model test on shaking table

  • Wang, Mingming;Yang, Yi;Xiao, Weirong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.661-670
    • /
    • 2017
  • The dynamic model test of dam-reservoir coupling system for a 203m high gravity dam is performed to investigate effects of reservoir water on dynamic responses of dam during earthquake. The hydrodynamic pressure under condition of full reservoir, natural frequencies and acceleration amplification factors along the dam height under conditions of full and empty reservoir are obtained from the test. The results indicate that the reservoir water have a stronger influence on the dynamic responses of dam. The measured natural frequency of the dam model under full reservoir is 21.7% lower than that of empty reservoir, and the acceleration amplification factor at dam crest under full reservoir is 18% larger than that under empty reservoir. Seismic dynamic analysis of the gravity dams with five different heights is performed with the Fluid-Structure Coupling Model (FSCM). The hydrodynamic pressures from Westergaard formula are overestimated in the lower part of the dam body and underestimated in its upper part to compare with those from the FSCM. The underestimation and overestimation are more significance with the increase of the dam height. The position of the maximum hydrodynamic pressure from the FSCM is raised with the increase of dam height. In view of the above, the Westergaard formula is modified with consideration in the influence of the height of dam, the elasticity of dam on the hydrodynamic pressure. The solutions of modified Westergaard formula are quite coincident with the hydrodynamic pressures in the model test and the previous report.

The Interpretation on Underground Stress of Soil Layer Subjected to Moving Repeated Loads (이동하중에 의한 지중응력 해석)

  • Park Heung-Gyu;Kim Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.55-63
    • /
    • 2005
  • In this research, we have compared and analyzed the value driven from theoretical equation of Boussinesque, Westergaard, Newmark and K$\"{o}$ogler with our experimental value from the model test on the underground stress distribution condition. As a result of conducting the Model Test, a change in the underground stress according to the loading was proven to be very similar to the tendency shown in the theories of Westergaard. A tendency of increasing in a straight line was shown in the underground stress according to the increase of loading. When compared to that of the theoretical equation, underground stress values were great until the depth of 15cm. However, after that depth, a tendency of showing smaller value than that of the theoretical equation was shown. Correlations between Moving Repeated Load (or) and Underground Stress ($\Delta\sigma$) show $\Delta\sigma\;=\; 0.009\cdot{\sigma}r-0.1$(depth 60 cm).

Characteristics of Vertical Stress Distribution in Soil according to the Relative Density of Sandy Soil in case of Surface Loading (지표면 재하시 사질토 지반의 상대밀도에 따른 지중 연직응력분포 특성)

  • 임종석;이인형;정원중
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.422-426
    • /
    • 2003
  • Model soil tank tests were conducted in sandy soil to investigate the effect of surcharge strip loads on vertical stress distribution in soil. A total number of 6 tests were performed using one loading plate and two relative density(55%, 65%). The soil was considered as an elastic material, while no friction was allowed between the wall and the soil. Measured stress values were compared to predictions defined by Frohlich, Boussinesq and Westergaard. The comparison of measured values and predictions used the ratio between the soil pressure and load value. Results of this study demonstrated that experimental values were generally larger than predictions. The Frohlich analysis provided the best prediction, while the Boussinesq analysis and Westergaard theory not presented a satisfactional result.

  • PDF

Earthquake Analysis of Dam Floodgate Using Calibrated Added Mass (보정된 부가질량을 이용한 댐 수문의 지진해석)

  • Bea, Jung-Ju;Kim, Ho-Seung;Kim, Yong-Gon;Lee, Jee-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.31-40
    • /
    • 2009
  • In this paper, a trial-error based method is presented to calibrate added mass models through numerical iterations minimizing the difference between the measured frequency data and its numerical simulation result for a dam floodgate. Earthquake analysis of the real floodgate for which the on-site hammering vibration test is performed show that the classical Westergaard added mass model gives relatively larger values in the maximum earthquake force and the maximum total displacement than the present added mass model, based on the calibration of on-site measurement data.

Application of Hydrodynamic Pressure for Three­dimensional Earthquake Safety Analysis of Dam Intake Towers (댐 취수탑 3차원 내진안전성 평가에서의 동수압 적용방법에 관한 연구)

  • Song, Gwang-Seok;Min, Kyoung-Uk;Bea, Jungju;Lee, Jeeho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.139-147
    • /
    • 2018
  • In the present study, effective hydrodynamic pressure modeling methods for three-dimensional earthquake safety analysis of a dam intake tower structure are investigated. Time history analysis results using the Westergaard added mass and Chopra added mass methods are compared with the one by the CASI (Coupled Acoustic Structural Interaction) method, which is accepted as giving almost exact solutions, to evaluate the difference in displacement response, stress and dynamic eccentricity. The 3D time history analysis of a realistic intake tower, which has the standard geometry widely used in Korea, shows that the Chopra added mass method gives similar results in displacement and stress and less conservative results in dynamic eccentricity to CASI ones, while the Westergaard added mass yields much more conservative results in all measures. This study suggests to use the CASI method directly for three-dimensional earthquake safety analysis of a dam intake tower, if computationally possible.

Seismic Design of Sheet Pile Walls Used in Harbor Construction (항만공사에 이용되는 널말뚝의 내진설계)

  • Kim, Hong Taek;Bang, Yoon Kyung;Kang, In Gyu;Cho, Won Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.171-187
    • /
    • 1991
  • In the present study, an analytical solution method is proposed for the seismic design of cantilever sheet pile walls and anchored sheet pile walls used in harbor construction. Seepage pressures, together with a change in magnitudes of effective horizontal soil pressures, are included in the proposed solution method. Also, the Mononobe-Okabe analysis as well as the Westergaard and Matsuo-Ohara theory of hydrodynamic pressures is used in the proposed method. Further, the choice of values for safety factors is examined for the seismic design of anchored sheet pile walls, and the effects of various parameters(dredge line slope, differential in water levels, anchor position, and wall friction angle) on embedment depth, anchor force, and maximum bending moment are analyzed for anchored walls in dense sand deposits. In addition. the tables that could be used for preliminary seismic design of anchored walls in dense sands are presented. The proposed method deals with the sheet pile walls with free earth support.

  • PDF

Analysis of the Long-term Settlement Behavior Due to the Additional Embankment on the Waste Lime Landfill in Public Waters Reclaimed Land (공유수면 매립지내 폐석회 매립시설의 추가성토에 따른 장기침하 거동 분석)

  • Kang, Jeong Ku;Yi, Yeun Jeung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • Recently, the reclamation of public waters has been on a downward trend due to environmental problems, but there is a limitation to evaluating environmental characteristics index uniformly. In this study, the stability of settlement behavior on public waters reclaimed land was analyzed using the experimental test. From the primary consolidation influence factors, the characteristics of the waste lime was similar that of clay in process of consolidation. Assuming that the waste lime landfill is the layer reinforced with thin geosynthetic reinforcement, the settlement was predicted by calculating the amount of increase using the Westergaard method. As a result of predicting settlement with degree of consolidation, it was found that the increase in stress was reduced by 40% when the surface layer of the soft ground was reinforce with geotextiles compared to the case where it was not reinforced. In addition, the consolidation behavior characteristics of clay and waste lime were compared using the correlation between the plasticity index and internal friction angle of waste lime. Since the waste lime in the public process of consolidation, it was predicted that long-term settlement will increase further.

Advanced model of subbases for the multi-layered pavement system (다층 포장 구조체의 개선된 지반 모델)

  • 조병완;이계삼
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.53-56
    • /
    • 1995
  • Despite the recent development of structural analysis programs for the CRCP pavements over Westergaard's equations and finite element techniques, the Winkler foundations which are modelled by series of vertical springs at the nodes are generally used for the computer modelling of subbases under the concrete slab. Herewith, two parameter of soil foundation model is adopted as the most convenient mathematical model to enable deflections outside the loaded area to be effected and to upgrade the Winkler foundations. This paper highlights the derivations of finite element method for the two-parameter soil foundation model in the concrete pavements.

  • PDF

스트레인 게이지를 이용한 항공기용 구조 재료의 응력확대계수 측정

  • 김재훈;이현철;김덕회;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.21-21
    • /
    • 1999
  • 파괴인성의 정량적 평가는 균열이 내재할 수 있는 구조물의 설계 및 사용중 건전성 확보를 위하여 필요하다. 파괴인성의 측정은 광탄성법, 코스틱법 및 모아레법 등에 의하여 주로 평가되고 있으나 고가의 장비가 필요하고 실험으로 구현하는데 어려움이 있기 때문에, 실험이 비교적 간단하고 신뢰성이 있는 스트레인 게이지법에 관한 연구가 최근에 이루어지고 있다. 본 연구는 항공기나 로켓의 추진기용 구조재로 사용되는 마레이징강과 티타늄 합금을 이용하여 파괴인성시험을 수행하였다. 균열선단의 변형률장은 Westergaard 응력 함수를 사용한 다중변수해로 표현하였고, 스트레인게이지에서 얻은 변형률을 대입하여 파괴인성치를 산출하였다. 스트레인게이지법에 의한 파괴인성치는 ASTM E399의 규정에 의한 실험결과들과 비교하여 그 유용성을 제시하였다.

  • PDF