• Title/Summary/Keyword: wet oxidation method

Search Result 58, Processing Time 0.034 seconds

Measurement of Interface Trapped Charge Densities $(D_{it})$ in 6H-SiC MOS Capacitors

  • Lee Jang Hee;Na Keeyeol;Kim Kwang-Ho;Lee Hyung Gyoo;Kim Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.343-347
    • /
    • 2004
  • High oxidation temperature of SiC shows a tendency of carbide formation at the interface which results in poor MOSFET transfer characteristics. Thus we developed oxidation processes in order to get low interface charge densities. N-type 6H-SiC MOS capacitors were fabricated by different oxidation processes: dry, wet, and dry­reoxidation. Gate oxidation and Ar anneal temperature was $1150^{\circ}C.$ Ar annealing was performed after gate oxidation for 30 minutes. Dry-reoxidation condition was $950^{\circ}C,$ H2O ambient for 2 hours. Gate oxide thickness of dry, wet and dry-reoxidation samples were 38.0 nm, 38.7 nm, 38.5 nm, respectively. Mo was adopted for gate electrode. To investigate quality of these gate oxide films, high frequency C- V measurement, gate oxide leakage current, and interface trapped charge densities (Dit) were measured. The interface trapped charge densities (Dit) measured by conductance method was about $4\times10^{10}[cm^{-1}eV^{-1}]$ for dry and wet oxidation, the lowest ever reported, and $1\times10^{11}[cm^{-1}eV^{-1}]$ for dry-reoxidation

  • PDF

An Effective Process for Removing Organic Compounds from Oily Sludge

  • Jing, Guolin;Luan, Mingming;Chen, Tingting;Han, Chunjie
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.842-845
    • /
    • 2011
  • Wet air oxidation (WAO) of oily sludge was carried out using $Fe^{3+}$ as catalyst, placed in a 0.5 L batch autoclave in the temperature range of $250-330^{\circ}C$. Experiments were conducted to investigate the effects of temperature, the initial COD, reaction time, concentration of catalyst and $O_2$ excess (OE) on the oxidation of the oily sludge. The results showed that in the WAO 88.4% COD was achieved after 9 min reaction at temperature of $330^{\circ}C$, OE of 0.8 and the initial COD of 20000 mg/L. Temperature was found to have a significant impact on the oxidation of oily sludge. Adding a catalyst significantly improved the COD removal. Homogenous catalyst, $Fe^{3+}$, showed effective removal for pollutants. COD removal was 99.7% in the catalytic wet air oxidation (CWAO) over $Fe^{3+}$ catalyst. The results proved that the CWAO was an effective pretreatment method for the oily sludge.

Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices (MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징)

  • O, Gyeong-Yeong;Lee, Gye-Hong;Lee, Gye-Hong;Jang, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.327-333
    • /
    • 2002
  • In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

A Study on the Flow Characteristics of an Oxidizer Feed Section for Wet-air Oxidation in Gravity Pressure Reactor (중력식 습식산화반응기 내 산화제 공급부의 유동특성에 관한 연구)

  • Lee, Hongcheol;Hwang, Inju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.10-13
    • /
    • 2016
  • The wet-air oxidation in gravity pressure reactor is effective for organic waste treatment with energy saving under high pressure and high temperature. But its oxidation control is difficulty because its multi-phase flow characteristics is very complicated. The flow characteristics of an oxidizer feed section in the gravity pressure reactor were investigated using numerical method which are verified by comparison with experimental results. In this study, the results showed that the flow rate of oxidizer have an effect on the generation of bubble around feed section.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method (습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구)

  • Lee, Dong Woo;Um, Chang Hyun;Chu, Jae Uk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Al2O3/SiO2/Si(100) interface properties using wet chemical oxidation for solar cell applications

  • Min, Kwan Hong;Shin, Kyoung Cheol;Kang, Min Gu;Lee, Jeong In;Kim, Donghwan;Song, Hee-eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.418.2-418.2
    • /
    • 2016
  • $Al_2O_3$ passivation layer has excellent passivation properties at p-type Si surface. This $Al_2O_3$ layer forms thin $SiO_2$ layer at the interface. There were some studies about inserting thermal oxidation process to replace naturally grown oxide during $Al_2O_3$ deposition. They showed improving passivation properties. However, thermal oxidation process has disadvantage of expensive equipment and difficult control of thin layer formation. Wet chemical oxidation has advantages of low cost and easy thin oxide formation. In this study, $Al_2O_3$/$SiO_2/Si(100)$ interface was formed by wet chemical oxidation and PA-ALD process. $SiO_2$ layer at Si wafer was formed by $HCl/H_2O_2$, $H_2SO_4/H_2O_2$ and $HNO_3$, respectively. 20nm $Al_2O_3$ layer on $SiO_2/Si$ was deposited by PA-ALD. This $Al_2O_3/SiO_2/Si(100)$ interface were characterized by capacitance-voltage characteristics and quasi-steady-state photoconductance decay method.

  • PDF

Degradation of Benzothiophene by Potassium Ferrate(VI) (Potassium Ferrate(VI)를 이용한 Benzothiophene 분해특성 연구)

  • Lee, Kwon-Chul;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.643-649
    • /
    • 2011
  • Degradation of benzothiophene(BT) in the aqueous phase by potassium ferrate(VI) was investigated. Potassium ferrate(VI) was prepared by the wet oxidation method. The degradation efficiency of BT was measured at various values of pH, ferrate(VI) dosage and initial concentration of BT. BT was degraded rapidly within 30 seconds by ferrate(VI). While the highest degradation efficiency was achieved at pH 5, the lowest degradation efficiency was achieved at pH 9. Also, the initial rate constant of BT increased with decreasing of the BT initial concentration. In addition, the intermediate analysis for the reaction of BT and ferrate(VI) has been conducted using GC-MS. Benzene, styrene, benzaldehyde, formaldehyde, benzoic acid, formic acid, and acetic acid were identified as reaction intermediates, and ${SO_4}^{2-}$ was identified as an end product.