• Title/Summary/Keyword: whole mount embryo culture

Search Result 5, Processing Time 0.017 seconds

Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

  • Park, Jae-Won;Shin, Yun Kyung;Choen, Yong-Pil
    • Development and Reproduction
    • /
    • v.18 no.3
    • /
    • pp.153-160
    • /
    • 2014
  • Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second mid-preimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.

Temporal Aquaporin 11 Expression and Localization during Preimplantation Embryo Development

  • Park, Jae-Won;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Environmental conditions during early mammalian embryo development are critical and some adaptational phenomena are observed. However, the mechanisms underlying them remain largely masked. Previously, we reported that AQP5 expression is modified by the environmental condition without losing the developmental potency. In this study, AQP11 was examined instead. To compare expression pattern between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP11 by whole mount immunofluorescence. When the fertilized embryos were developed in the maternal tracts, the level of Aqp11 transcripts was decreased dramatically until 2-cell stage. Its level increased after 2-cell stage and peaked at 4-cell stage, but decreased again dramatically until morula stage. Its transcript level increased again at blastocyst stage. In contrast, the levels of Aqp11 transcript in embryos cultured in vitro were as follows. The patterns of expression were similar but the overall levels were low compared with those of embryos grown in the maternal tracts. AQP11 proteins were localized in submembrane cytoplasm of embryos collected from maternal reproductive tracts. The immune-reactive signals were detected in both trophectoderm and inner cell mass. However, its localization was altered in in vitro culture condition. It was localized mainly in the plasma membrane of the blastocysts contacting with external environment. The present study suggests that early stage embryo can develop successfully by themselves adapting to their environmental condition through modulation of the expression level and localization of specific genes like AQP11.

Parthenogenetic Activation of Black Bengal Goat Oocytes

  • Haque, Aminul;Bhuiyan, Mohammad Musharraf Uddin;Khatun, Momena;Shamsuddin, Mohammed
    • Journal of Embryo Transfer
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • In vitro maturation and activation of oocytes are primary steps towards biotechnological manipulation in embryology. The objectives of the present study were to determine the oocyte recovery rate per ovary, in vitro maturation rates of oocytes and rates of parthenogenetically activation of matured oocytes in Black Bengal goats. All visible follicles were aspirated to recover follicular fluid from individual ovaries (number of ovaries = 456). The immature cumulus oocyte complexes (COCs; n = 1289) were cultured in tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal bovine serum (FBS) for 27 hours at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The matured oocytes (n = 248) were activated with 5 ${\mu}M$ ionomycin for 5 minutes followed by treatment with 2 mM 6-dimethylaminopurine (6-DMAP) for 4 hours. After activation, oocytes were cultured for another 14 hours in TCM-199 supplemented with bovine serum albumin (BSA) at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The pronucleus formation in activated oocytes was determined by staining with 1% orcein (whole mount technique). Matured oocytes (n = 176) without activation stimuli were used as control. The mean number of oocytes recovered per ovary was $3.5{\pm}0.5$. The proportion of oocytes matured in vitro, confirmed by the presence of first polar body, was $42.1{\pm}4.7%$. Parthenogenetic activation, evidenced by formation of pronucleus, occurred in $37.2{\pm}15.8%$ of matured oocytes. No pronucleus formation was observed in control oocytes. In conclusion, a combination of ionomycin and 6-DMAP induces activation in one third of Black Bengal goats' oocytes.

Comparison between Two Cryo-devices for Vitrification of Immature Oocytes of Indigenous Zebu Cows in Bangladesh

  • Choudhury, Sk Mohiuddin;Bhuiyan, Mohammad Musharraf Uddin;Rahman, Mohammad Moshiur;Rahman, Md. Masudur;Sharif, Md. Newaz;Bhattacharjee, Jayonta;Bari, Farida Yeasmin;Juyena, Nasrin Sultana
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.311-317
    • /
    • 2017
  • Cryopreservation of oocytes by vitrification technique may contribute a lot in the field of reproductive biotechnology. The objectives of the present study were to evaluate the effectiveness of two cryo-devices for vitrification of immature oocytes of indigenous zebu cows. Slaughter house derived immature cumulus-oocyte-complexes (COCs) of cows were vitrified using 15% dimethyl sulphoxide (DMSO) as cryoprotective agent (CPA) with 0.5 mol sucrose in TCM 199 supplemented with 20% FBS. Vitrification of COCs was completed after immediate plunging of COCs loaded cryotop or French mini straw into the liquid nitrogen ($LN_2$). Then the COCs containing cryotop or French mini straws were warmed in 0.25 mol sucrose and 20% FBS supplemented TCM 199 followed by in vitro culture in $50{\mu}l$ droplets of bicarbonate buffered TCM 199 supplemented with 10% FBS, pyruvate, FSH and oestradiol for 24 hrs at $39^{\circ}C$ with 5% CO2 in humidified air. After maturation culture, oocytes were denuded and examined under inverted microscope for presence of polar body as the indication of maturation. Denuded oocytes were also stained by whole mount technique using 1% orcein to examine the maturation by presence of MII chromosomes. The in vitro maturation rate was significantly (p<0.05) higher in oocytes vitrified and warmed using crytop ($47.1{\pm}6.9%$) than that of French mini straw ($15.9{\pm}12.5%$). Moreover, in vitro maturation rate was significantly (p<0.05) highe r in control oocytes (not vitrified) ($84.5{\pm}14.2%$) than that of vitrified oocytes. In conclusion, cryotop is better than French mini straw as cryo-device for vitrification of bovine immature oocytes.

Comparison of teratogenecity induced by nano- and micro-sized particles of zinc oxide in cultured mouse embryos

  • Jung, A Young;Jung, Ki Youn;Lin, Chunmei;Yon, Jung-Min;Lee, Jong Geol;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • The increasing uses of zinc oxide nanoparticles (nZnO) in industrial and personal care products raise possible danger of using nZnO in human. To determine whether ZnO induces size-dependent anomalies during embryonic organogenesis, mouse embryos on embryonic day 8.5 were cultured for 2 days under 50, 100, and $150{\mu}g$ of nZnO (< 100 nm) or micro-sized ZnO (mZnO; $80{\pm}25{\mu}m$), after which the morphological changes, cumulative quantity of Zn particles, and expressions of antioxidant and apoptotic genes were investigated. Although embryos exposed to $50{\mu}g$ of ZnO exhibited no defects on organogenesis, embryos exposed to over $100{\mu}g$ of ZnO showed increasing anomalies. Embryos treated with $150{\mu}g$ of nZnO revealed significant changes in Zn absorption level and morphological parameters including yolk sac diameter, head length, flexion, hindbrain, forebrain, branchial bars, maxillary process, mandibular process, forelimb, and total score compared to the same dose of mZnO-treated embryos. Furthermore, CuZn-superoxide dismutase, cytoplasmic glutathione peroxidase (GPx) and phospholipid hydroperoxidase GPx mRNA levels were significantly decreased, but caspase-3 mRNA level was greatly increased in nZnO-treated embryos as compared to normal control embryos. These findings indicate that nZnO has severer teratogenic effects than mZnO in developing embryos.