• Title/Summary/Keyword: wide-angle parabolic approximation equation

Search Result 6, Processing Time 0.029 seconds

Wave Transformation Model in the Parabolic Approximation (포물형 근사식에 의한 천해파 산정모델)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.134-142
    • /
    • 1990
  • A wide-angle approximation in the parabolic equation method is presented to calculate wave transformation in the shallow water. The parabolic approximation to the mild-slope equation is obtain-ed by the use of a splitting matrix, which leads to a generalized equation in form. A numerical model based on a finite difference scheme is presented and computational results are provided to test the model against the laboratory measurements of circular and elliptical shoals. The numerical results are in good agreement with most of experimental data. Therefore it can be concluded that the model shows greater capability to reproduce the characteristics of waves in the refractive focus.

  • PDF

Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator (인수분해 된 분모를 갖는 두 변수 유리함수 근사에 기반한 3차원 음향 포물선 방정식 제곱근 연산자의 분할기법 제안)

  • Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, novel approximate form of the square-root operator of three dimensional acoustic Parabolic Equation (3D PE) is proposed using a rational approximant for two variables. This form has two advantages in comparison with existing approximation studies of the square-root operator. One is the wide-angle capability. The proposed form has wider angle accuracy to the inclination angle of ${\pm}62^{\circ}$ from the range axis of 3D PE at the bearing angle of $45^{\circ}$, which is approximately three times the angle limit of the existing 3D PE algorithm. Another is that the denominator of our approximate form can be expressed into the product of one-dimensional operators for depth and cross-range. Such a splitting form is very preferable in the numerical analysis in that the 3D PE can be easily transformed into the tridiagonal matrix equation. To confirm the capability of the proposed approximate form, comparative study of other approximation methods is conducted based on the phase error analysis, and the proposed method shows best performance.

Numerical Simulation of Irregular Waves Over a Shoal Using Parabolic Wave Model (포물형 파랑모형을 이용한 수중천퇴상 불규칙파의 수치모의)

  • 윤성범;이정욱;연영진;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.158-168
    • /
    • 2001
  • A numerical model based on the wide-angle parabolic approximation equation is developed for the accurate simulation of the directional spreading and partial breaking of irregular waves. This model disintegrates the irregular waves into a series of monochromatic wave components, and the simultaneous calculations are made for each wave component. Then, the computed wave components are superposed to get the wave height of irregular waves. To consider the partial breaking of irregular waves in the computation the amount of energy dissipation due to breaking is estimated using the superposed wave height. The accuracy of the developed model is tested by comparing the numerical results with the experimental measurements reported earlier. In the case of non-breaking waves a considerable accuracy of the model is observed for both regular and irregular waves. On the contrary it is found that the accuracy is significantly degenerated for the case of breaking waves. Some analyses for the accuracy degeneration are presented.

  • PDF

A Study of Wide-Angle Parabolic Mild Slope Equation (광각 포물형 완경사 방정식에 관한 연구)

  • 김재중;박정철
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.281-290
    • /
    • 1998
  • The propagation of water waves over irregular bottom bathymetry and around islands involves many process-shoaling, refraction, energy dissipation and diffraction. Numerical model in this study is developed with the mild slope equation to investigate wave transformation in water of varying depth and combined waves and a current. The method used is splitting method and minimax approximation. The numerical method used in this study is Crank-Nicolson scheme in the FDM. This model is applied to Vincent shoal and compared with laboratory experimental data. The results agreed well with laboratory data. Current effect is considered in this study. This model can be used for the estimation of rip current in the slowly varying topography.

  • PDF

A Study of Wide-Angle Parabolic Mild Slope Equation (광각 포물형 완경사 방정식에 관한 연구)

  • 박정철;김재중;김기철;이정만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.201-209
    • /
    • 1998
  • The propagation of water waves over irregular bottom bathymetry and around islands involves many process. In this study of numerical model is developed current in water of varying depth. The method used is splitting method and minimax approximation. This numerical method used is Crank-Nicolson scheme. This model is applied to Vincent shoal and compared with laboratory data. The results agreed well with laboratory data. The results agreed well with laboratory data. Current effect is considered in this study. So, the model is used for the estimation of rip current in the slowly varying topography.

  • PDF

NUMERICAL SIMULATION OF REFRACT10N-DIFFRACTION OF WAVES C ONSIDERING BREAKING-INDUCED CURRENTS

  • Yoon, Sung-Bum;Lee, Jong-In;Lee, Chang-hoon;Park, Joon-Young
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.203-213
    • /
    • 2002
  • A wide-angle parabolic approximation equation model considering the interaction between wave and current is employed to simulate the deformation of irregular waves over a submerged shoal. It is found that the model gives qualitative agreements with experimental data for the cases of breaking waves around the shoal. Thus, the effect of breaking-induced current on the refraction-diffraction of waves is well understood.

  • PDF