• Title/Summary/Keyword: wind attack-angle

Search Result 179, Processing Time 0.028 seconds

AERODYNAMIC CHARACTERISTICS OF NACA64-418 AIRFOIL WITH BLUNT TRAILING EDGE ACCORDING TO THE SHAPE OF TRAILING EDGE (뒷전 두께를 갖는 NACA64-418 익형의 꼬리형상에 따른 공력특성)

  • Yoo, H.S.;Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.94-99
    • /
    • 2014
  • The aerodynamic performance of a modified NACA64-418 with blunt trailing edges of irregular shape was investigated. As the trailing edge of the airfoil was thickened, the drag of the airfoil was increased due to development of a re-circulation bubble in the wake region. To reduce the drag of the airfoil with a blunt trailing edge, the optimum shape of the trailing edge for a modified NACA64-418 was investigated. The numerical results showed that the drag of the protruding shape was much more decreased than that of the retreating shape, but the lift was almost the same regardless of shape. In addition, the pitching moment of the modified NACA64-418 with a protruding sharp trailing edge was the smallest at the given angle of attack.

Experimental Study on the Measurement Method of Heat Transfer Coefficients Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 열전달 계수 측정법에 관한 실험적 연구)

  • 홍철현;정준화;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.581-588
    • /
    • 2003
  • Heat transfer characteristics of a pair of longitudinal vortices using a transient liquid crystal technique are studied experimentally. In order to control the strength of longitudinal vortices, angle of attack of the vortex generators is $20^{\circ}$and the length of space from the centerline the vortex generations is 25mm apart. The heat transfer measurements using a transfer coefficients. The following conclusions are obtained from the present experiment. When any vortex generators are not set up in wind tunnel test, heat transfer rate is low respectively. However, with the vortex generators of rectangular winglet, the heat transfer on the local surface can be enhanced.

Analysis of the two dimensional sheet debris flight equations: initial and final state

  • Scarabino, A.;Giacopinelli, P.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.109-125
    • /
    • 2010
  • This work presents some analytical and numerical results of a dynamic analysis of the dimensionless 2-D sheet flight equations. Two empirical models for aerodynamic forces and moments are used and compared. Results show that the initial condition of rest is always unstable, and for long times three distinct flight regimes are possible, depending on the initial angle of attack, the Tachikawa number, Ta (in fact, the parameter chosen was its inverse, ${\Omega}$), and a mass ratio ${\Phi}$. The final orbits in the velocity space and their maximum kinetic energy are compared with a theoretical asymptotic state of the motion equations, and some design considerations are proposed.

Prandtl-Meyer Expansion Through a Small Wavy Wall of Supersonic Flow with Condensation in a Channel (유로내에서 응축을 수반하는 초음속 유동의 미소진폭 파형벽에 의한 Prandtl-Meyer 팽창)

  • 권순범;안형준;선우은
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1582-1589
    • /
    • 1994
  • The characteristics Prandt1-Meyer expansion of supersonic flow with condensation through a wavy wall in a channel are investigated by experiment and numerical direct marching method of characteristics. In the present study, for the case of moist air flow in the type of indraft supersonic wind tunnel, the dependency of location of formation and reflection of the oblique shock wave generated by the wavy wall and the distribution of flow properties, on the specific humidity and temperature at the entrance of wavy wall and the attack angle of the wavy wall to the main stream is clarified by schlieren photograph, distribution of static pressure and Mach number, and plots of numerical results. Also, we confirm that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Improvement of Lift Dump on a Fighter-Type Wing at Approach Condition

  • Hwang, Soo-Jung;Lee, Il-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2005
  • The 1/9-scale model of a fighter-type configuration was tested in the Micro-Craft 8ft ${\times}$ 12ft wind tunnel facility. An abrupt lift dump was found at a certain range of angle of attack under the pre-scheduled approach configuration. To avoid a probable unsatisfactory flight behavior due to the lift dump, various aerodynamic devices were suggested. Extensive tests applying the cutoff leading edge flaps, boundary layer fences, saw tooth and vortex generators were performed with flow visualization as well as force and moment measurements. Test results showed that the origin of the lift dump was caused by the secondary boundary layer flow separation generated from the strong interaction between wing and flap. Various solutions for avoiding the unfavorable feature were suggested with the merits and demerits.

Effects of LEX on the Vortex Field over a Delta Wing (LEX가 델타형 날개의 와류 유동장에 미치는 영향)

  • 백승욱;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of a leading edge extension(LEX) on the vortex flow field over a delta wing by measuring the total pressure distribution in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was $1.76{\times}10^6$. The wing with the LEX experienced a strong interaction between the LEX and wing vortices. As the angle of attack increased, the coupled vortex field of these two vortices maintained its strength and concentricity much better than the vortex field over the wing without the LEX.

A Study on the Dynamic Stability of Air-to-Ground Missile Using the Free Vibration Technique (자유진동기법을 이용한 공대지 미사일의 동안정성에 관한 연구)

  • 박재현;백승욱;조환기;허원욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • A dynamic stability test was performed to determine dynamic stability derivatives for the pure pitching motion of air-to-ground missile model in the low speed wind tunnel. The free vibration technique was employed to acquire oscillation characteristics of the model for damping coefficients. Damping coefficients are obtained by the method of logarithmic decrement. Results show good damping effects and stability capability at Mach numbers 0.1 and 0.2, with the angle of attack ranging from -15 to +20 degrees.

  • PDF

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

Analysis of Steady and Unsteady Performance for 3-D Surface Effect Wing (3차원 표면효과익의 정상 및 비정상 성능해석)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.14-25
    • /
    • 1998
  • This paper describes the numerical modelling for the steady and unsteady forces of 3-D wings flying near the free surface based on a potential based panel method. For the steady problem where a wing flies over the fixed float surface, steady lift and drag forces are calculated for wings with and without end-plates having different sections, angle of attacks, aspect patios and flying heights. These numerical results are compared with the wind tunnel test results. The unsteady problem is treated as a boundary value one where a wing flies over the described wavy surface. The unsteady lift force variations of a wing due to different wave lengths and heights are calculated at different flying heights.

  • PDF