• Title/Summary/Keyword: wind induced vibrations

Search Result 102, Processing Time 0.019 seconds

Modeling of rain-wind induced vibrations

  • Peil, Udo;Nahrath, Niklas
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Rain-wind induced vibrations of cables are a challenging problem in the design of cable-stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is not available. This paper presents a mathematical model describing rain-wind induced vibrations as movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the movement of the water rivulet on the cable surface can be described by the model including all geometrical and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental study is currently performed to calibrate the parameters of the model.

Rain-wind induced vibrations of cables in laminar and turbulent flow

  • Peil, U.;Dreyer, O.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.83-97
    • /
    • 2007
  • In the last decades there have been frequent reports of oscillations of slender tension members under simultaneous action of rain and wind - characterized by large amplitudes and low frequencies. The members, e.g. cables of cable-stayed bridges, slightly inclined hangers of arch bridges or cables of guyed-masts, show a circular cross section and low damping. These rain-wind induced vibrations negatively affect the serviceability and the lifespan of the structures. The present article gives a short literature review, describes a mathematical approach for the simulation of rain-wind induced vibrations, sums up some examples to verify the calculated results and discusses measures to suppress the vibrations.

Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge

  • Hua, Xu G.;Chen, Zheng Q.;Lei, Xu;Wen, Qin;Niu, Hua W.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.683-693
    • /
    • 2019
  • In August 2012, during the passage of the typhoon Haikui (1211), large amplitude vibrations were observed on long hangers of the Xihoumen suspension Bridge, which destroyed a few viscoelastic dampers originally installed to connect a pair of hanger ropes transversely. The purpose of this study is to identify the cause of vibration and to develop countermeasures against vibration. Field measurements have been conducted in order to correlate the wind and vibration characteristics of hangers. Furthermore, a replica aeroelastic model of prototype hangers consisting of four parallel ropes was used to study the aeroelastic behavior of hanger ropes and to examine the effect of the rigid spacers on vibration mitigation. It is shown that the downstream hanger rope experiences the most violent elliptical vibration for certain wind direction, and the vibration is mainly attributed to wake interference of parallel hanger ropes. Based on wind tunnel tests and field validation, it is confirmed that four rigid spacers placed vertically at equal intervals are sufficient to suppress the wake-induced vibrations. Since the deployment of spacers on hangers, server hanger vibrations and clash of hanger ropes are never observed.

Full-scale experiments of cantilever traffic signal structures

  • Cruzado, Hector J.;Letchford, Chris
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.21-41
    • /
    • 2013
  • Wind-induced vibrations of mast arms of cantilever traffic signal structures can lead to fatigue failure. Two such structures were instrumented each with a sonic anemometer and a camera that records the motions of the tip of the arm. It was observed throughout this experiment that large amplitude vertical vibrations of mast arms with signals with backplates occur for the most part at low wind speed ranges, between 2 to 7 m/s, and as the wind speed increases the amplitude of the vertical vibrations decreases. The results of these experiments contradict the generally accepted belief that vortex shedding does not cause significant vibrations of mast arms that could lead to fatigue failure, which have been attributed to galloping in the past. Two damping devices were tested with mixed results.

Wind tunnel studies of cantilever traffic signal structures

  • Cruzado, Hector J.;Letchford, Chris;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.225-240
    • /
    • 2013
  • The wind-induced vibrations of the mast arm of cantilever traffic signal structures can lead to the fatigue failure of these structures. Wind tunnel tests were conducted on an aeroelastic model of this type of structure. Results of these experiments indicated that when the signals have backplates, vortex shedding causes large-amplitude vibrations that could lead to fatigue failure. Vibrations caused by galloping were only observed for one particular angle of attack with the signals having backplates. No evidence for galloping, previously thought to be the dominant cause of fatigue failures in these structures, was observed.

Characterization of wind-induced vibrations in transmission lines by single-channel field data analysis

  • Yamaguchi, Hiroki;Gurung, Chandra B.;Yukino, Teruhiro
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.121-134
    • /
    • 2005
  • Wind-induced vibrations measured in the Tsuruga Test Line are characterized in this paper by single-channel data analysis based on piecewise application of Prony's method. Some of events were identified as galloping, while most of events were buffeting responses, which were confirmed partly by the buffeting analysis. Effects of end condition etc. on the response characteristics are also discussed.

Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests

  • Hua, X.G.;Chen, Z.Q.;Chen, W.;Niu, H.W.;Huang, Z.W.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.349-361
    • /
    • 2015
  • Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel box-girder suspension bridges where different vertical modes are selectively excited in turn with wind velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional vertical amplitudes are determined as a function of reduced velocity U/fD. Two 'lock-in' ranges are observed at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second 'lock-in' range, which is induced by the conventional vortex shedding, consistently gives larger responses than the first one and the Sc-normalized maximum non-dimensional responses are almost the same for different spring constants. The first 'lock-in' range where the vibration frequency is approximately two times the vortex shedding frequency is probably a result of super-harmonic resonance or the "frequency demultiplication". The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these modes is identical.

Unifying calculation of vortex-induced vibrations of overhead conductors

  • Leblond, Andre;Hardy, Claude
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.79-88
    • /
    • 2005
  • This paper deals with a unified way for calculating vortex-induced vibrations (Aeolian vibrations in transmission line parlance) of undamped single overhead conductors. The main objective of the paper is to identify reduced parameters which would unify the predicted vibration response to the largest possible extent. This is actually done by means of a simple mathematical transformation resulting, for a given terrain (associated to a given wind turbulence intensity), into a single, unified response curve that is applicable to any single multi-layered aluminium conductor. In order to further validate the above process, the predicted, unified response curve is compared with measured response curves drawn from tests run on a full-scale test line using several aluminium-conductor-steel-reinforced (ACSR), all-alloy-aluminium-conductor (AAAC) and aluminium-conductor-alloy-reinforced (ACAR) conductors strung at different tensions. On account of the expected scatter in the results from such field tests, the agreement is shown to be good. The final results are expressed by means of only four different curves pertaining to four different terrain characteristics. These curves may then be used to assess the vibration response of any undamped single, multi-layer aluminium conductor of any diameter, strung at any practical tension.

Field Observation and Analysis of Subspan Oscillatron in 4 Bundled Conductor Transmission Lines (가공송전선로의 서브스판 진동에 대한 실험 및 실측 분석)

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Lee, Dong-Il;Min, Byoung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.525-527
    • /
    • 2003
  • This paper presents a collection of a number of observations made on 4 bundled conductor transmission lines concerning the behaviour of conductors under the effect of natural winds. Namely in order to know the wind-induced vibration status and study wind-induced vibrations have been recorded and analyzed form the real transmission lines. By the field observation and analysis results, subspan oscillations among the wind-induced vibrations is known to be the main type of the vibrations. And some common characteristics of the observation sites, which have had high maintenance rate, can be found from the data also. It is considered that the main results described in this paper will be useful data and be used in controlling the subspan oscillations and protecting the conductors.

  • PDF

Numerical studies of the suppression of vortex-induced vibrations of twin box girders by central grids

  • Li, Zhiguo;Zhou, Qiang;Liao, Haili;Ma, Cunming
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.305-315
    • /
    • 2018
  • A numerical study based on a delayed detached eddy simulation (DDES) is conducted to investigate the aerodynamic mechanism behind the suppression of vortex-induced vibrations (VIVs) of twin box girders by central grids, which have an inhibition effect on VIVs, as evidenced by the results of section model wind tunnel tests. The mean aerodynamic force coefficients with different attack angles are compared with experimental results to validate the numerical method. Next, the flow structures around the deck and the aerodynamic forces on the deck are analyzed to enhance the understanding of the occurrence of VIVs and the suppression of VIVs by the application of central grids. The results show that shear layers are separated from the upper railings and lower overhaul track of the upstream girder and induce large-scale vortices in the gap that cause periodical lift forces of large amplitude acting on the downstream girder, resulting in VIVs of the bridge deck. However, the VIVs are apparently suppressed by the central grids because the vortices in the central gap are reduced into smaller vortices and become weaker, causing slightly fluctuating lift forces on the deck. In addition, the mean lift force on the deck is mainly caused by the upstream girder, whereas the fluctuating lift force is mainly caused by the downstream girder.