• 제목/요약/키워드: wind vibration factor

검색결과 46건 처리시간 0.017초

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • 제37권2호
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

Wind tunnel blockage effects on aerodynamic behavior of bluff body

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • 제1권4호
    • /
    • pp.351-364
    • /
    • 1998
  • In wind tunnel experiments, the blockage effect is a very important factor which affects the test results significantly. A number of investigations into this problem, especially on the blockage correction of drag coefficient, have been carried out in the past. However, only a limited number of works have been reported on the wind tunnel blockage effect on wind-induced vibration although it is considered to be fairly important. This paper discusses the aerodynamic characteristics of the square model and square model with corner cut based on a series of the wind tunnel tests with various blockage ratios and angles of attack. From the test results, the aerodynamic behavior of square models with up to 10% blockage ratio are almost the same and square models with up to 10% blockage ratio can be tested as a group which behaves similarly.

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.

사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구 (Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable)

  • 서주원;고현무
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

Wind load parameters and performance of an integral steel platform scaffold system

  • Zhenyu Yang;Qiang Xie;Yue Li;Chang He
    • Wind and Structures
    • /
    • 제36권4호
    • /
    • pp.263-275
    • /
    • 2023
  • As a new kind of construction facility for high rise buildings, the integral steel platform scaffold system (ISPS) consisting of the steel skeleton and suspended scaffold faces high wind during the construction procedure. The lattice structure type and existence of core tubes both make it difficult to estimate the wind load and calculate the wind-induced responses. In this study, an aeroelastic model with a geometry scale ratio of 1:25 based on the ISPS for Shanghai Tower, with the representative square profile, is manufactured and then tested in a wind tunnel. The first mode of the prototype ISPS is a torsional one with a frequency of only 0.68 Hz, and the model survives under extreme wind speed up to 50 m/s. The static wind load and wind vibration factors are derived based on the test result and supplementary finite element analysis, offering a reference for the following ISPS design. The spacer at the bottom of the suspended scaffold is suggested to be long enough to touch the core tube in the initial status to prevent the collision. Besides, aerodynamic wind loads and cross-wind loads are suggested to be included in the structural design of the ISPS.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.