• Title/Summary/Keyword: winding angles

Search Result 35, Processing Time 0.034 seconds

Current Limiting Characteristics of flux-lock Type High-lc Superconducting Fault Current Limiter According to fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.747-753
    • /
    • 2005
  • We Investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter(SFCL) by fault angles. The flux-lock type SFCL consists of the primary and the secondary copper coils wound in parallel through the iron core and YBCO thin film. In this paper, the current limiting characteristics of the flux-lock type SFCL by fault angles in case of the subtractive and the additive polarity windings were compared and analyzed. The flux-lock type SFCL limited fault current more quickly as the fault angles increased. On the other hand, the initial power burden of the superconducting element during the fault increased as the fault angles increased. In addition, we found that the resistance of the flux-lock type SFCL in case of the subtractive polarity winding was more increased than that of the additive polarity winding. The peak current of the fault current in case of the subtractive polarity winding was larger than that of the additive polarity winding.

Variations of Initial Fault Current Limiting Instant According to Fault Angles in the Flux-lock Type SFCL (자속 구속형 전류제한기의 사고각에 따른 초기 사고전류 제한 시점 변화분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.61-64
    • /
    • 2004
  • In this paper, we investigated the variations of initial fault current limiting instant according to fault angles in the flux-lock type SFCL. The flux-lock type SFCL consists of the coil 1 and the coil 2 that are wound in parallel each other through an iron core. The operation of the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. The subtractive polarity winding operation could be analyzed with three modes. On the other hand, the additive polarity winding operation could be analyzed with five modes. The variations of initial fault current limiting instant in two winding directions were dependent on the fault angles. It was confirmed from experiment that the fault current limiting instant was getting faster and the magnitude of fault current at the initial fault time was getting higher for higher fault angle.

  • PDF

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Development of Design Program for Composite Pressure Vessel Type-4 (복합재료 압려용기 Type-4 설계 프로그램 개발)

  • Lee Ho Yong;Joe Chee Ryong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.224-227
    • /
    • 2004
  • A computer program for composite pressure vtlssel design is developed. In-puts are : material-property(young's modulus, shear modulus, tensile strength, poisson's ratio, density), operating pressure, burst pressure, liner thickness, boss diameter, boss weight and number of helical angles. Out-puts are; thickness of each layer, weight of the vessel, dimension of the vessel, inner volume, dome-shape and helical winding angle. Also filament winding angles can be selected various kinds of utilizing virtual boss diameter.

  • PDF

A Computing Switching Angle for Adaptive Operation of SRM for Drill (드릴용 SRM의 최적운전을 위한 스위칭각 산정)

  • Choe, Gyeong-Ho;Kim, Nam-Hun;Baek, Won-Sik;Kim, Dong-Hui;No, Chae-Gyun;Kim, Min-Hoe;Hwang, Don-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.575-582
    • /
    • 2001
  • This paper presents a calculating method of switching angle for adaptive switched reluctance motor (SRM) drive of a drill. The operation of the SRM is completely characterized by the flux linked by one phase winding which depends only on the current in that same phase winding and the rotor position. An efficiently adaptive SRM drive is possible on appropriately scheduling the commutation angles with accurate rotor position, supplied current value and speed information. An adaptive SRM drive with reduction torque ripple should be controlled by an optimized phase current control along with rotor position. Therefore, we are suggested a computing method of switching turn-on and off angles for adaptationally SRM operation with varied rotor speed and load. To probe the computing method, we have some simulation and experiment, it is shown a good result that can be computing the optimized switching angles for an electric drill motor.

  • PDF

A Study on the Stress Analysis for Design of Composite Material Shafts of Small Boats (소형 선박용 복합재료 축 설계를 위한 음력해석에 관한 연구)

  • Kim, Yun-Hae;Im, Cheol-Mun;Bae, Chang-Won;Wang, Ji-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.308-313
    • /
    • 2002
  • It is known that the composite material shafts using on small boats have various advantages comparing to forged steel shafts, fur examples, specific strength, fatigue strength, corrosion, etc. The analysis of the stresses and strains in the composite material shafts made by filament winding method is presented in this paper. The classical laminated plate theory is applied on the patch cut from the composite material hollow shafts. It is verified that the composite material hollow shafts of diameter 40 mm is the most optimum when the ratio of the inner diameter to the outer is 0.4 and winding angle is 45$^{\circ}$. It is also proven that the shear strain does not change seriously between 30$^{\circ}$and 60$^{\circ}$of winding angles. It is dangerous when the winding angle is over 75$^{\circ}$because the values of shear strain and stress produced on the shaft are too high so it must be avoided to wind the filament by the angle over 75$^{\circ}$.

A Novel Concept of Phase Swapping for Multiple Enhanced Speed Operations of a PM machine using Winding Switching

  • Atiq, Shahid;Hussain, Asif;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper presents a novel concept of phase swapping to associate multiple flux weakening ranges to a non-salient PM machine without altering any hardware of the machine. The proposed concept enables a dual three-phase machine to be operated with different displacement angles between the two three-phase windings. Hence, different flux weakening ranges using winding switching can be accomplished by applying this concept. It was also demonstrated that the proposed concept can be utilized for the discrete step as well as continuous operation of the machines. Any application requiring a wide speed range operation of up to thirteen times the base speed can benefit from this proposed concept. Analytical, simulation, and experimental results are provided to validate the effectiveness of the proposed concept.

Design of Filament Wound Composite Tubes under Thermal Contraction (열수축을 하는 필라멘트 와인딩 복합재료 관의 설계)

  • 정태은;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

Saturation Characteristic of Iron Core Dependent on Fault Angle in a Flux-Lock Type SFCL (자속구속형 초전도 사고전류제한기의 사고각에 따른 철심의 포화특성)

  • Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.29-34
    • /
    • 2007
  • The fault current limiting characteristics of a flux-lock type superconducting fault current limiter(SFCL) according to fault angles were investigated. From the electrical equivalent circuit with the magnetization branch, the inner magnetic flux of this SFCL due to fault angles was induced and its effect on the limited fault current was analyzed. From the fault current limiting experiments, the exciting current, which described the saturation of the iron core, was calculated and its dependence on the fault angle was analyzed. Before the fault happened, the exciting current did not happen, that it kept zero value. However, after the fault happened, the exciting current flowed and, the exciting current in case of the additive polarity winding showed higher value than for the case of the subtractive polarity winding. The analysis results were compared with the experimental ones, and experimental results agreed with the analysis ones.

Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR-III Rocket (KSR-III 삼단 복합재 연소관의 구조 해석 및 변형률 측정)

  • 박재성;김철웅;조인현;오승협;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.24-31
    • /
    • 2001
  • Filament wound structures such as pressure tanks, pipes and motor cases of rockets are widely used in the aerospace application. The determination of a proper winding angle and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In this study, possible winding angles considering the slippage between a fiber and a mandrel surface are calculated using the semi-geodesic path equation. In addition, finite element analysis using ABAcUS are performed to predict the behavior of filament wound structures considering continuous change of winding angle along the dome part. The water-pressuring tests of 3rd stage motor case are performed to verify the analysis procedure. The strain gages are attached on the surface in the fiber direction. Progressive failure analysis is performed to predict the burst pressure and the weakest region of the motor case. The effect of reinforcement is also studied to increase its performance.

  • PDF