• 제목/요약/키워드: wood ultrastructure

검색결과 8건 처리시간 0.024초

Anatomical Comparison of North American Eastern, Southern, and Western Redcedar Wood

  • Eom, Young Geun;Kwon, Ohkyung;Hanna, Robert B.;Meyer, Robert W.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권2호
    • /
    • pp.9-20
    • /
    • 2008
  • Anatomical comparison of 3 North American species with commercial name of redcedar was executed to provide taxonomic information for prevention of confusion and establishment of sound business transaction in the wood market. Eastern redcedar (Juniperus virginiana) and southern redcedar (Juniperus silicicola) could not be separated on the basis of microstructure and ultrastructure of wood. Western redcedar (Thuja plicata), however, appeared to be obviously separated from eastern and southern redcedar in a number of microscopic and ultramicroscopic features. Useful features for separating these two groups were intercellular spaces in transverse surface, latewood width, radial intertracheid pitting, warty layer and pits with torus extensions in tracheids, ray composition, nodular end walls in ray parenchyma cells, and cross-field pitting.

목재세포벽(木材細胞壁)의 미세구조(微細構造)에 관한 연구(硏究) - Compression wood의 나선비후(螺旋肥厚)의 구조(構造) - (Ultrastructure of Wood Cell Wall Tracheids - The Structure of Spiral Thickenings in Compression Wood -)

  • 이원용
    • Journal of the Korean Wood Science and Technology
    • /
    • 제9권1호
    • /
    • pp.1-12
    • /
    • 1981
  • The structure of spiral thickenings, particulary the appearance, arrangement and orientation of thickenings in compression wood of Torreya nucifera, were studied in detail by light and polarizing microscope, scanning and transmission electron microscope. The results obtained are as follows: (1) Using the inclined sections at an angle of 45 degrees to the fiber axis, it seems that we can not only observe the more accurate transverse view of the thickenings but also investigate the formation of their thickenings. (2) Generally 2-4 pieces of thickenings are projected to the cell lumen as nipple-like appearance in transverse section and are as frequent, well developed, forming pair and have the rope-like appearance in radial surface. (3) The secondary wall of early wood is composed of 3 layers (S1, S2, S3) and orientation of thickening appears S helix but that of late wood is of 2 layers (S1, S2) and that orientation shows Z helix. Above two regions are demaracted at several tracheid cells from the growth ring boundary. (4) Orientation of thickening seems to be a element showing the characteristics of compression wood in Torreya nucifera. (5) It believes that the thickenings of compression wood are integral part of the S3 in early wood tracheids and of the S2 in late wood and have the same orientations as the inner-most microfibrils in these layers. (6) Thickening and cavities seem to be not formed together in a secondary cell wall of same tracheids.

  • PDF

Water Absorption and Dimensional Stability of Heat-treated Fast-growing Hardwoods

  • PRIADI, Trisna;SHOLIHAH, Maratus;KARLINASARI, Lina
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2019
  • A common problem with fast-growing hardwoods is dimensional instability that limits use of their wood. In this study, we investigated the effects of pre-drying methods, temperatures, and heating duration on the specific gravity, water absorption, and dimensional stability of three tropical fast-growing hardwoods, jabon (Neolamarckia cadamba Roxb.), sengon (Falcataria moluccana Miq.), and mangium (Acacia mangium Willd.). Wood samples were pre-dried by two methods (fan and oven at $40^{\circ}C$), and heat treatments were performed at three temperatures (120, 150, and $180^{\circ}C$) for two different time periods (2 and 6 hours). The specific gravity, water absorption, dimensional stability, and structural changes of the samples were evaluated. The results revealed that heat treatments slightly reduced the specific gravity of all three wood species. In addition, the heat treatments reduced water absorption and significantly improved dimensional stability of the samples. Oven pre-drying followed by heat treatment at $180^{\circ}C$ for 6 hours resulted in good physical improvement of jabon and sengon wood. Fan pre-drying followed by heat treatment at $180^{\circ}C$ for 2 hours improved the physical properties of mangium wood. The heat treatment shows a promising technique for improving the physical characteristic of fast growing hardwoods.

Cell Wall Structure of Various Tropical Plant Waste Fibers

  • Abdul Khalil, H.P.S.;Siti Alwani, M.;Mohd Omar, A.K.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.9-15
    • /
    • 2007
  • A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.

Wood Anatomy and Identification of North American Firs (Abies)

  • Eom, Young-Geun;Kwon, Oh-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권5호
    • /
    • pp.451-458
    • /
    • 2009
  • Anatomical comparison of 8 North American species of Abies was executed to provide taxonomic information. The species of eastern (balsam and Fraser fir) and western (Pacific silver, white, grand, subalpine, California red, and noble fir) were found to be separated on the basis of crystals and color of contents in ray parenchyma cells and ray height. In eastern species, crystals in ray parenchyma cells were absent and ray parenchyma cell contents were colorless to very light. These two eastern species were further characterized by the absence of uniseriate rays exceeding 25 cells in height. In western species, only subalpine fir had colorless to very light contents but the remaining five species have dark contents in ray parenchyma cells. Crystals were absent to extremely sparse in Pacific silver fir, somewhat frequent in noble fir, frequent in grand and California red fir, and very frequent in white fir. Uniseriate rays exceeding 25 cells in height were regularly found in grand and California red fir but absent in white and noble fir.

Micromorphological Characteristics of Frost Rings in the Secondary Xylem of Pinus radiata

  • Lee, Kwang Ho;Kim, Jong Sik;Singh, Adya P.;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.1-8
    • /
    • 2007
  • Frost ring formed in the secondary xylem of Pinus radiata was examined using various microscopic techniques. Cell walls in a frost ring were poorly developed, lacking in the proportion of wall components. Formation of secondary cell wall was imperfect and thickness of secondary wall was varied. Cytochemical examinations provided the evidence that the synthesis of structural polysaccharides and lignin was inhibited, resulting in the malformation of secondary cell walls. Judging by the highly irregular nature of the cell wall, it appears that cellulosic/hemicellulosic framework was affected and the template for lignification by frost.

공초점반사현미경을 이용한 소나무 유연벽공의 초미세구조 연구 (Investigation of Bordered Pit Ultrastructure in Tracheid of Korean Red Pine (Pinus densiflora) by Confocal Reflection Microscopy)

  • 권오경
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권3호
    • /
    • pp.346-355
    • /
    • 2014
  • 소나무의 가도관과 유연벽공의 미세구조를 연구하는데 공초점반사현미경법을 이용하여 획득한 3차원 화상을 사용하였다. 가도관 유연벽공의 토러스, 마르고, 벽공연의 미세구조가 명확하게 관찰되었으며, 교분야벽공의 미세구조로 가도관과 방사유세포 사이의 연결구조 및 방사유세포 내의 역학적 지지구조도 관찰할 수 있었다. 가도관 세포벽의 3차원 화상에서는 S1, S2, S3층과 이 층들의 사이에 있는 이행층의 존재도 확인할 수 있었다. 또한 S3층과 S2층의 마이크로 피브릴 배향의 관찰이 가능하였고, 유연벽공 주변의 복잡한 마이크로피브릴 배향 특성도 직접적으로 확인할 수 있었다. 본 연구의 결과 공초점반사현미경법은 소나무 가도관의 세포벽, 유연벽공, 교분야벽공의 미세구조를 연구하는데 유용하게 이용될 수 있는 현미경 기법으로 여겨졌다.

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.