• Title/Summary/Keyword: zeolite reed bed

Search Result 5, Processing Time 0.016 seconds

Vertical Flow Zeolite-Filled Reed Bed for Treatment of Artificial Sewage with Intermittent Feeding (수직 흐름 제올라이트 갈대 여과상의 간헐적 주입에 의한 인공하수 처리)

  • 서정윤;김태형;최민수
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.140-144
    • /
    • 2003
  • The artificial sewage was treated using a vertical flow zeolite-filled reed bed. The artificial sewage was fec into the reed bed for 10 minutes every 6 hours at the hydraulic load 314 L/$m^2$ \ulcorner day. The filtering height of the reed bed was 100 cm and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolites ; 0.5~1 mm and 1~3 mm in diameter. Annual average removal efficiency was CO$D_{Cr}$ 95.1%, T-N 49.5%, $NH{_4^+}$-N 99.4% and T-9 56.4%. T-N removal efficiency decreaced remarkably from 73 to 27% with the operating time. Most of T-P was adsorbed in the uper area of the reed bed. The major portion of adsorbed phosphorus was composed of Fe-, Ca- and reductant selubele Fe-P.

Horizontal Flow Zeolite-Filled Reed Bed for Treatment of Artificial Sewage with Intermittent Feeding (수평 흐름 제올라이트 갈대 여과상에 의한 인공하수 처리)

  • 서정윤;최민수
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.506-510
    • /
    • 2003
  • The artificial sewage was treated using a horizontal flow zeolite-filled reed bed. The artificial sewage was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of 314 L/㎡$.$day. The filtering height of the reed bed was 100 cm and the zeolite mixture was filled in the reed bed. The mixttjre consisted of the same volume of two types of zeolite: 0.5∼l mm and 1∼3 mm in diameter. Annual average removal efficiency was CODcr 95.8%, T-N 56.5%, NH$\_$4/$\^$+/-N 99.4% and T-P 61.3%. T-N removal efficiency decreased remarkably from 84 to 32% with the operating time.

Horizontal Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (수평 흐름 제올라이트 갈대 여과상에 의한 생활하수 처리)

  • Seo Jeoung-Yoon;Kim Ean-Ho
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.28-33
    • /
    • 2006
  • A sewage was treated using a horizontal flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of $314L/m^2$ day. The filtering height of the reed bed was 100 cm and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite : $0.5{\sim}1mm$ and $1{\sim}3mm$ in diameter. Annual average removal efficiency was SS $88.5%,\;COD_{cr},\;86.1%,\;COD_{Mn}\;81.0%,\;T-N\;48.6%,\;NH_4^+-N\;97.1%$ and T-P 42.8%. T-N of effluent was mostly $NO_3^--N$ and the concentration of $NO_2^--N$ in effluent was lower than 0.1 mg/L. All removal efficiencies did not show a remarkable seasonal change.

Evaluation of Combined Vertical and Horizontal Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (직렬연결 수직 및 수평 흐름 갈대 제올라이트 인공습지에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2014
  • A sewage was treated using serially combined vertical and horizontal flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of 314 $L/m^2{\cdot}day$. The reed bed depth was 100cm and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite ; 0.5~1mm and 1~3mm in diameter. pH value decreased in vertical bed, while it increased in horizontal bed. But DO concentration in the effluent of both beds was higher than that in the influent. Average removal efficiencies of the entire treatment system were 99.22% SS, 95.56% BOD, 91.02% $COD_{Cr}$, 87.78% $COD_{Mn}$, 45.87% T-N, 99.88% $NH{_4}^+-N$ and 71.17% T-P. Most of T-N in the effluent was $NO{_3}^--N$. However, the concentration of $NO{_2}^--N$ in the effluent was lower than 0.04 mg/L. All removal efficiencies did not show a remarkable seasonal change.

Vertical Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (수직 흐름 제올라이트 갈대 여과상에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • A sewage was treated using a vertical flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of $314L/m^3{\cdot}$day. The filtering height of the reed bed was 100 em and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite: 0.5$\sim$1 mm and 1$\sim$3 mm in diameter. Annual average removal efficiency was 88 89.9%, $COD_{Cr}$ 86.1 %, $COD_{Mn}$ 81.2%, T-N 34.0%, $NH_4^+$-N 97.3% and T-P 34.6%. T-N of effluent was mostly $NO_3^-$-N and the concentration of $NO_2^-$-N in effluent was lower than 0.1 mg/L. All removal efficiencies did not show a remarkable seasonal change. The ranking of phosphorous fractions fixed to the zeolite in column test was Ca-P > Fe-P > reductant soluble Fe-P > occluded P > saloid P > AI-P at all depths of the filter. All phosphorous fractions except for AI-P reduced at deeper filter layer, while their content ratios increased at deeper filter layer. Organic matter content was the highest at the highest layer (0$\sim$5 cm from the top of the filter) and only small differences were observed at the deeper filter layer than 5 em from the top. Organic matter content increased at all depths of the filter with the operating time.