적응필터와 퍼지제어기를 이용한 유도전동기의 속도센서 없는 벡터제어

김상욱∗, 양이우, 김명석
인하대학교 전기공학과

Adaptive Filter and Fuzzy Controller for Speed Sensor-Less Vector Control of Induction Motor

Sang-uk Kim, Iee-woo Yang, Young-seok Kim
Dept. of Electrical Eng., INHA Univ.

Abstract

It has been known the fact that extended Kalman filter (EKF) is correctly capable of estimating system parameters and state variables by eliminating virtually all influences of structural noises, and fuzzy controller is robust to parameter variations. This paper presents a design method of Reduced-Order EKF and fuzzy controller which consists of the rotor speed and the rotor flux estimation only by measuring stator currents. Experiment results show that both the rotor speed and the rotor flux can be prominently estimated in a wide range of the speed.

문론

1. 적응필터와 퍼지제어기를 이용한 제어시스템

그림 1 전체 제어시스템 블록도

전체 제어시스템 블록도는 그림 1과 같으며 구성하였다. 축소차원 EKF에 의해 단지 측정된 정류만을 이용하여 2차차속 가속과 회전자속도를 추정함으로써 속도센서 없는 적응형 벡터제어를 수행한다. 추정된 회전자속도와 정류속도와의 오차는 퍼지제어기의 입력이 된다. 어려지게 제어기인 퍼지제어기는 강화된 의량과 유연한 제어가능성을 가지는 반면 정장상태에서 약간의 전동이 존재하게 된다. 따라서 입력된 속도의 변화와는 선형화를 통해 과상태에서의 퍼지제어기를 만정상태에서는 저항력과 다를이 동작하게 함으로써 속도변수를 개선하고 thúc춘 토크문 전류장
치를 얻는다. 출력된 같은 토요르제한기에 의해 제한받게 되고 이차근계지형지형과 좌표변환을 통해 2차수 속 좌표계상에서 고정자지형좌표계의 D축과 Q축 전위지형지로 좌표변환된다. 고정자지형좌표계상에서의 2차수속의 위치는 축소차원 EKF에 의해 추정된 자속값을 사용한다.

2. 유도전동기의 모델

제한된 알고리즘을 수행하기 위해 유도전동기의 상대방정식 및 출력방정식은 고정자좌표계에서 표현될 수 있다.

\[
\begin{align*}
\dot{i}_x &= A \begin{bmatrix} i_x \\ \lambda_x \\ \lambda_r \end{bmatrix} + B \begin{bmatrix} v_s \\ 0 \end{bmatrix} \\
\dot{i}_r &= C \begin{bmatrix} i_r \\ \lambda_r \end{bmatrix}
\end{align*}
\]

(1)

실험을 수행하기 위해 안속시간 미분형태의 상대방정식은 테일리근수정법에 의해 이산화된 모델로 변경한다.

\[
X(k+1) = F(k) X(k) + G(k) U(k)
\]

(3)

\[
X(k) = \begin{bmatrix} i_{m}(k) \\ i_{w}(k) \\ \lambda_{m}(k) \\ \lambda_{w}(k) \end{bmatrix}^T
\]

(4)

\[
U(k) = \begin{bmatrix} v_m(k) \\ v_w(k) \end{bmatrix}
\]

(5)

\[
F(k) = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} G(K) = \frac{ts}{\sigma I_r}
\]

(6)

여기서

\[
F_{11} = (1 - \frac{R_r}{\sigma I_r} + \frac{R_r(1-\sigma)}{\sigma I_r}) I
\]

(8)

\[
F_{12} = -\frac{M_t s}{\sigma I_r L_r} (\frac{R_r}{L_r} I - \omega_m J)
\]

(9)

\[
F_{21} = \frac{M R_r}{L_r} I
\]

(10)

\[
F_{22} = (1 - \frac{R_r ts}{L_r}) I - \omega_m ts J
\]

(11)

\[
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]

(12)

\[
\Delta = \frac{oh(k(k))}{\sigma I_t} \quad \Delta(k(k))
\]

(19)

위의 모델로부터 최적자속도와 2차속도를 그림 2의 깔만필터 알고리즘에 의하여 추정될 수 있다.

\[
\begin{align*}
\dot{X}(k+1) &= A \Delta(k) + \Delta(k+1) \\
Z(k+1) &= \frac{\omega(k)}{\sigma I_t}
\end{align*}
\]

(14)

(15)

(16)

(17)

(18)

이제 EKF는 동적시스템에 있어서 불규칙성을 지니고 있는 최적상태추정 프로세스이다. 즉 실제 값 구간마다 추정되는 임공이 실시간 대응적으로 동적시스템의 비치 하수변수를 추정하기 위한 선형, 불변성, 추정오차변화를 최소화 하는 추정자이다. 임공은 적자하고 있는 미지의 상태변수들은 실제치에서 입으키기 때문에 그들의 존재유는 시스템 파라미터를 조절하기 위해 요구되지만 이를 실현하기 위해서 EKF이론은 제안되었고, 임공에서 추정한 이산화된 모델
4. 피저제어
피저제어의 제어규칙을 결정하기 위해 입력으로는 추정된 회전자속도와 회전자속도 저장치와의 오차, 그리고 그 오차의 변화율로 한다. 출력으로는 토크크름 정류지령치로 한다. 각 변수에 대한 멤버십함수는 그림 3과 같다.

\[e = w_m^* - \hat{w}_m \]

\[\Delta e = \hat{w}_m(k) - \hat{w}_m(k-1) \]

그림 3 멤버십함수

제어하는 시스템을 제어하기 위한 피저제어규칙은 다음 표 1과 같다.

<table>
<thead>
<tr>
<th>(e)</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>NM</td>
<td>PS</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>ZE</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PM</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PB</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

표 1 피저제어규칙

피저추론은 Min–Max Compositional Rule에 의해 그리고 비피저는 무게중심법에 의해 설계적인 출력을 얻는다. 최종적인 출력은 Saturuation기법을 이용함으로써 토크 크림 지령기를 하게 효과적으로 용답속도를 따로보도록 한다.

그림 4 Saturuation기법을 이용한 출력도

그림 4에서 보는바와 같이 피저제어는 정제적 규칙에 따라 매우 빠른 응답을 보이며 정상상태에서는 매우 편한 진동을 나타내므로 유도 전동기 밸브개방에서 토크크림 정류지령치는 고정전류지령치에 신호적으로 반응하게 되므로 정상상태를 많게 된다. 따라서 오차 충 \(e \) \(w_m^* - \hat{w}_m \) \(e \leq |c| \)일 경우 재역치를 통과시킨다.

\[i_t^* (e < |c|) = \frac{b}{s^2 + a} * weight \]

(20)

5. 실험결과
실험장치의 전체적인 시스템은 그림 5에 나타내고 있다.

그림 5 전체 시스템 구성도

전체 시스템을 제어하기 위해서 TMS320C31 DSP 제어기가 사용되었다. 제어하는 알고리즘은 단지 두개의 고정자속 전류를 측정해 오고 고정자 좌표계상에서의 고정자속 전압은 DSP 내부인장알고리즘에서 수행하도록 프로그래밍되어 있다. 한 실행환경의 기간 동안의 연산 시간은 400 μsec이었다. 실험에서 사용된 3상 유두전동기는 전압 220V, 8.3A, 1720rpm, 2.2kW, 4극이며 1 차저항 30, 2차저항 1,560, 1차 인덕턴스 330mH, 2차인덕턴스 310mH, 상호인덕턴스 310mH의 정수를 갖고 있다. 그림 6에서 그림 8은 사용할 수령치를 갖추었을 경우의 특성을 보여주고 있는데 800rpm을 지령한 후 1초후에 1200rpm을 주었을 경우이다. 그림 6은 U상 저항전류와 실제전류를 그리고 그림 7은 실제속도, 추정속도, 속도오차를 보여주고 있다. 그림 7에서 파도상태에 대한 오차는 약간 존재하고 있으나 영평균(stationary condition)을 유지하고 있는 정상상태에서는 거의 존재하지 않고 없음을 볼 수 있다. 그림 8은 D촉 전류지령치와 D촉 저속지령치를 보여주고 있다. 그림 9는 1000rpm에서 600rpm으로 지령치를 주었을 경우의 추정속도와 U상 지령전류를 보여주고 있다. 그림 10은 100rpm 운전중에 -100rpm의 지령치를 주었을 경우이다. 역회전시에도 저항치에 대한 속도응답특성을 양호함을 볼 수 있다.
결론

제안하는 알고리즘은 벡터제어 및 속도제어를 위해 단지 두개의 고정자축 전류만을 측정함으로서 필요한 속도정보 및 자속정보를 얻기위한 방법으로 측속차원 EKF와 피저지제어기를 이용하였다. 이를 구현하기위해서 인산이 빼른 TMS320C31 DSP 제어기가 사용되었으며 실험 결과 제안한 시스템은 넓은 속도 영역에서 속도 추정과 자속추정 성능이 매우 양호하게 나타나고 있음을 볼 수 있었다.

본 연구는 "한국과학회단의 핵심전문연구"에 의해 수행된 일부임

References