J. Korean Math. Soc. Vol. 11, No. 2, 1974

A SHORT PROOF OF BARBUT'S THEOREM

BY HYUNKOO LEE

Erol Barbut [1] defines the Levitzki radical L(R) of a semiring and shows that every nil subsemiring of a semiring R with the ascending chain conditions on left and right annihilator ideals is nilpotent, provided that L(R) is a k-ideal. A left (right) ideal I of a semiring R is called a left(right) k-ideal if $x+y \in I$ and $y \in I$ implies that $x \in I$ for each x and y in R. A left (right) ideal I of a semiring R is a left (right) annihilator if there exists a subset S of R such that $I=l(S)=\{x \in R | xS=(0)\}, I=r(S)=\{x \in R | Sx=(0)\}$.

In this paper, we give a short proof of Barbut's theorem, that is, every nil subsemiring of a semiring with the ascending chain conditions on left and right annihilators is nilpotent.

A semiring R is said to be left T-nilpotent if for each sequence $\{x_n\}$ of elements in R there exists an n such that $x_1x_2\cdots x_n=0$.

LEMMA (cf. [2]). Let a semiring R satisfy the ascending chain condition on left annihilators. Then a subsemiring S of R is nilpotent if and only if it is left T-nilpotent.

Proof. Suppose that S is left T-nilpotent. Since the ascending chain condition of left annihilators is inherited from the semiring by its subsemirings there exists m such that

$$l(S^m) = l(S^{m+t})$$
 for all $t \ge 1$.

If $S^{m+1} \neq (0)$, then there exists $x_1 \in S$ such that $x_1 S^m \neq (0)$. Then $x_1 S^{m+1} \neq (0)$ and hence there exists $x_2 \in S$ such that $x_1 x_2 S^m \neq (0)$. Then $x_1 x_2 S^{m+1} \neq (0)$ and there exists $x_3 \in S$ such that $x_1 x_2 x_3 S^m \neq (0)$. Continuing in this manner, we obtain a sequence $\{x_n\}$ in S such that $x_1 x_2 \cdots x_n \neq 0$ for each n. This contradicts the left T-nilpotency of S. Therefore S is nilpotent. The proof of the converse is obvious.

THEOREM (cf. [3]). If R is a semiring satisfying the ascending chain conditions on left and right annihilators, then any nil subsemiring of R is nilpotent.

Proof. Since the ascending chain conditions on left and right annihilators are inherited from the semiring by its subsemirings, we may, without loss of generality, assume that R is nil. We wish to show that R is nilpotent.

We say that $x_1 \in \mathbb{R}$ has an infinite chain if there exists an infinite sequence $\{x_n\}$ such that $x_1x_2\cdots x_n \neq 0$ for all n.

Suppose that R is not left T-nilpotent. Then there exist elements which have an infinite chain. Let $l(x_0)$ be maximal in $\{l(x) | x \text{ has an infinite chain}\}$. And let $l(x_1)$ be maximal in $\{l(x) | x_0x \text{ has an infinite chain}\}$. Inductively we find x_n such that $l(x_n)$ is maximal in $\{l(x) | x_0x_1x_2\cdots x_{n-1} x \text{ has an infinite chain}\}$. It is easy to see that

$$l(x_k) = l(x_k x_{k+1} x_{k+2} \cdots x_{k+t})$$
 for all k and t.

Received by the editors Nov. 11, 1974.

Hyunkoo Lee

We claim that $x_0x_1x_2\cdots x_nx_k=0$ for each n and $k \le n$. If $x_0x_1x_2\cdots x_nx_k\neq 0$ for some n and $k \le n$, then $x_0x_1x_2\cdots x_nx_kx_{k+1}\cdots x_{k+t}\neq 0$ for all t. Hence $x_0x_1x_2\cdots x_nx_k$ has an infinite chain. Whence $l(x_kx_{k+1}\cdots x_nx_k)=l(x_k)$. However, this is impossible since $x_kx_{k+1}\cdots x_n$ is a nilpotent element. Therefore $x_0x_1x_2\cdots x_nx_k=0$ for each n and $k \le n$. Let $y_k = x_0x_1x_2\cdots x_k$ for each k and let $S_i = \{y_k | k \ge i\}$, $i=1, 2, 3, \cdots$ Then $r(S_k)$ is properly contained in $r(S_{k+1})$ for all k since $y_kx_{k+1}\neq 0$ for all k and yet $y_nx_{k+1}=0$ for all k and $n\ge k+1$. This is a contradiction. Therefore R is left T-nilpotent. Hence, by the previous lemma, R is nilpotent.

COROLLARY 1 (Evol Barbut). If R is a semiring which satisfies the ascending chain conditions on left and right annihilators and is such that L(R) is a k-ideal, then any nil subsemiring of R is nilpotent.

The proof is evident.

COROLLARY 2. If R is a semiring satisfying the ascending chain conditions on left and right k-ideals, then any nil subsemiring of R is nilpotent.

Proof. Since every left or right annihilator is a left or right k-ideal, the result follows immediately from the theorem.

References

- [1] Erol Barbut, On nil semiring with ascending chain conditions, Fund. Math. 68 (1970), 261-264.
- [2] J.W. Fisher, On the nilpotency of nil subrings, Canad. J. Math. 22 (1970), 1211-1216.
- [3] I. H. Herstein and Lance Small, Nil rings satisfying certain chain conditions, Can. J. Math. 16 (1964), 771-776.

Seoul National University

142