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THE STRUCTURE OF IDEALS IN THE SEMIRING OF nXn MATRICES 

OVER A EUCLIDEAN SEMIRING 

By Louis Dale 

1. Introduction 

The structure of ideals in a Euclidean semiring E was given in [lJ. lt is natural 

to wonder whether or not this structure in E will carry over into the semir

ing of nXn matrices over E. Since a Euclidean semiring is commutative all of 

its ideals are two sided. However, one sided ideals do exist in the matrix semi

ring. Consequently, our attention w iII be directed toward the two sided ideals. 

The purpose of this paper is to investigate the structure of two sided ideals in 

the semiring of nXn matrices over a Euclidean semiring. lt is shown that the 

structure of ideals in the matrix semiring is almost identical to the structure 

of ideals in the Euclidean semiring. This is surprising since the matrix semiring 
is neither Euclidean nor commutative. 

2. Fundamentals 

For this paper, a semiring w iII be a a set S together with two binary opera

tion called addzïion (+) and mμ!tψlz"catz"o1Z ( • ) such that (S, +) is an abeIian 

semigroup with a zero, (S,') is a semigroup and multipIication distributes over 

addition from both the left and the right. A semiring S is said to be commχta

tz'νe if (S , .) is commutive and S is said to have an z'de1Ztz!y if there is an 

element eεS such that ae=ea=a for all aεS. 

DEFINITION. A subset 1 of a semiring S w iII be caIled an z'deal if 1 is a 
subsemigroup of (S, +), SICI and ISCI. 

1n this case 1 is called a tzvo sz'ded z'deal. If SICI, then 1 is caIled a lelt 

ideal while 1 is called a rz'ght z'deal if ISCI. 

DEFINITION. Let S be a commutative semiring with an identity e. Then 

Sp= {xεS I there exists yεS such that x=y+e} U {Q} is caIled φ??%C썽al part 01 
S , If S=Sp' then S is caIled a princz"pal semz'ring. 

DEFINITION. A EucIidean semiring E is a principal semiring together with 
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a íunction r/>: E .Z+ satisfying the following properties for all a, bεE. 

Ci) r/> Ca)=O if and only if a=O. 

(ii) If a+b>=O, then r/> Ca+b)늘r/> Ca). 

(iii) r/> Cab)= r/> Ca) r/> Cb). 

(iv) If b>=O, then there exists p, '1'εE such that a=pb+r where '1' =0 or r/>Cr) 

<r/>Cb). 

If S is a semiring, then the set of all nXn matrices over S will be denoted 

by MatnS. If S is a semiring with an identity, then it is clear that MatnS is 

a semiring with an identity. The η Xn identity matrix will be denoted by 1 

and the scalar matrix kI will be denoted by δCk). It is well known that the 

center of MatnS is {δCk)εMatnSlkεS} 

3. The structure of ideaIs in MatnE 

In a Euclidean semiring E the basic ideals are ideals of the form dT p 

where d， pεE and Tp= {xεEl r/>Cx)>r/> Cp)} U {O}. The following structure theorem 

was proved in [1]. 

THEOREM 1. Let A be aη ideal in a Ezeclidean semiring E. Then A=LUdT
p’ 

αheγe dTp is ηwximal in A , L = {tεAl r/> Ct)<r/>Cdp)} and LndTp= {O}. Moreover, 

LUS [p , 2p) is a basis for A whose z.mages are boμnded by r/>C2p). 

Our purpose here is to investigate the structure of two sided ideals in MatnE 

to see if their structure is related to the structure o! ideals in E. To do this, 

we use the well known fact thdt if R is a ring J* is an ideal in MatnR if and 

only if J* is the ring of all nXn matrices over ] for some ideal ] in R. It is 

easy to prove that this fact remains valid if R is a semiring. This establishes 
somewhat of a correspondence between two sided ideals in MatnE and ideals in 

E that is very useful. 

Let aεE and T강= {Cai)εMatnE|azj=O or ￠(atj)능r/> Ca)}. Clearly the zero ma

trix, 0, is in T강. 

THEOREM 2. If S=MatnE aηdaεE， then T감 is an ideal iη S. 

PROOF. If A=C와j)， B=(bij)εT강， then aij=O or r/> Cai)> r/> (a) and bij=O or 

ØCb서)>r/> Ca). Now if aij+bij>=O, then either aij>=O or bij>=O. If aij>=O then r/> Caij) 

낯o and it follows that r/>Caij+bij)늘r/>Caij)는r/> Ca). Similarly, if bij>=O, then 

￠(aij+bij)늘r/> Cbij)늘rþCa). In either case rþCaij+bψ)는rþCa). Consequently, aij+bi; 
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=0 or rþC짝j+bz1)르rþCa) and it follows that A+BETa융. Now if C= (Cij)εS. 
then CA=Cdi) where dij= I:cikaki" Clearly. if dij;':O, then citatj=;é.O for some t 
and it follows that 

rþCdi) =rþCI:cikakj)르rþC진tat) =rþCcit)rþCaμ)>rþCCi)rþCa)르rþCa). 

Consequently, dij=O or rþCdij)늘rþCa) and it follows that CAεT강. Similarly, 
ACεT감 and it follows that T강 is an ideal in S. 

The ideal T a in E and the ideal T강 in S have a natural relationship. To see 

this, let T = MatnTa' Clearly T is an ideal in S. Since T a = {x든ElrþCx)>rþCa)} U 

{아. it follows that if A=C딱j)ET， then aij:0 or ￠(aij)르rþCa). Consequently, 

AεT감 and it follows that TCT강. On the other hand if B=Cbij)εTaξ then 

bzI=O or ￠(b서)>rþCa) and it follows that bij드Ta• Hence BεT and it follows 

that T감ζT. Thus T강=T=MatnTa' This proves the following theorem. 

THEOREM 3. If E is a Eμclideam semiriηg. and aεE. then T~i'(-=MarnTa. 

This theorem allows us to extend the properties of the ideal T a to the ideal 

T감· 

THEOREM 4. Let E be a Euclidean semz'yz'ηg， S=MatnE aná a, bεE. Then 

(i) T감CT감 if aηd only tf rþCa)>rþCb). 

(ii) Ta*UT감=T/. where rþCc)=min{rþCa).rþCb)}. 

(iii) Ta육nT감 =T/. where rþCc)=max{rþCa).rþCb)}. 

(iv) 1/ {와} z's a seqμence 01 elements z'η E such that rþCai) <rþCai+1) then 

n Taf=0, tke zero mat7tx. 

PROOF. Ci) From theorem 3 we have T강=MatnTa and Tt=MatnTb• Con

sequently T감CT감 if and only if TaCTb• and TaCTb if and only if rþCa)르rþCb). 

• (ii) and (iii). Now a. b εE implies that rþCa)르rþCb) or rþCb)능rþCa). But (i) 

assures that T감CT감 or T감CT강 and it follows that T감UT감=T감 or Ta용U 

Tb*=Tt. If rþCc)=min{rþCa), rþCb)}. then T감UT감= T /. (iii) is proved in a 

\ 
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PROOF. If M=Cmij)εnMatnAk' then MεMatn4k for each kεJ and it 

iollows that mijεAk for each z", j. Thus mijεnAk and it foI1ows that (mzj)= 
]，，1εYíatnCnAk). Consequently, nMatnAkCMatιnAk). Reversing the steps in 
the above argument will show that MatηCnAk)CnMat，IAk' Consequently, Mat

1J 

cnAμ=nMatnAk. 

Proof of Civ). If {ai} is a sequence in E such that ØC깐) <ØCa i+1) for each ι 
then T강ljT야'+1 foIlows from (i). Hence T a，그Tal+1 for each t. BlltnTal= {아. 

Consequently, applying lemma 5 we get 

nT감‘ =nMatnTa， =Matη(nTat) = Matn {0} =0. 

It was shown in [1] that if E is a Euclidean semiring and A is an ideal in 
E such that T aCA for some aεE， then A=KUT m where T m is maximal in A 

and K= {xεA/O<ØCx)<øCm)}. We now establish the matrix semiring form of 

this theorem. 

THEOREM 6. Let E be a Euclz"dean senzz'rz"ng, S=Matn "? and V* an zaeal z"n 

S szech that T강CV용 lor some aEE. Then there exz"sts an mEE such that T nt 
Z"S maxz"mal z"n V* wzïh respect to zaeals 01 the 10γmT감 and YX=K*UT삼 ωhere 

K싸 = {Caij)εV치 o <ØCai) <ØCm) lor some ai). 

PROOF. Let V*=MatnV, where V is an ideal in E. Since T강εV*， it follows 

that T aCV, Consequently, V =KUT m' where T m is maximal in V with respect 

to ideals of the form T _' Since T _.CV. it foIlows that T ... *ζV*. To show that a. ------ - m ’ m 

T m* is maximal in V*, suppose rεE such that T n‘용c=117
휴ζV*. Then T mCTrC二V

and it foIlows that Tr=T m or Tr=V. Consequently, T/=T m* or T/=V* and 

it follows that Tm용 is maximal in V*. 

If K*= {Caij)EV*/O<ØCai) <ØCm) for some aij}, then it is clear that V*= 

K육UTm*. 

Observe that K* can be decomposed into two disjoint sets. If we let 
K얀= {(aZj)εK히 O드ØCaij) <rþCm) for all aij} and 

Kt= {Caij)εK츄/ there exists k, t, r and s such that 

。 <rþCukt) <rþCm) and rþCars)는rþCm)} • 
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then K1*nK설=rþ， K용=Klf육 UK2양융 and V육=K1*UK2강*UT、m* where Kt싹nK2양육nT，ηmη1 

=rþ. 것 

If d , aEE, then dT a is an ideal in E. The scalar matrix δ(d)=dl has the 

same properties in S=Matη E as d has in E. Since δ(d) is in the center of S, 

it is cIear that for aεE， δ(d)T강 is an ideal in S. Observe that 

δ(d)T강={(daej)laZI=0 or ￠(aZj)늘rþ(a)} • 

We not establish a relation between dT a and δ(d)Ta*. 

THEOREM 7. 11 E z's a Eκclz"dea1t senzz"ri;zg a1Zd d , aEE, then δ(d)T감= 

Mat’‘dTa• 

PROOF. If A=(aij)εMutndT a' then aijεdT a and it foIIows that aij=dbij 

where b;j=O or rþ(b서)>rþ(a). Thus A=(dbij)=δ(d)(bψ)=δ(d)B， where BεT감， 

and it follows that Aεδ(d)T감. Consequently, Mat，zdTaCδ(d)T감. On the other 

hand , let C=(cij)εδ(d)T감. Then C=δ(d)P for some P= (와1)εT강 Now Pijε 

Ta, C=δ(d)(Pij) =(dPij ) and it foIIows that CεMat;zd T a. Consequently, δ(d} 

T감ζMat，lTa and it foIIows that MatndTa=δ(d)T감· 

In order to prove our main structure theorem ior ideals in S we need to. 

consider the basis for an ideal in S. Let p_ _ be the matrix with 1 as the row r.s 
r-column s entry and 0 elsewhere. Then it is cIear that δ(a)Pr. s is a matrix 

with a as the row r-column s entry and 0 elsewhere. If B=(bij ), then Pr.s 

BPt . q is a matrix with bst as the row r-column q entry and 0 elsewhere. AIso 

B=(bzJ)=2δ(bij)Pi， j is a decomposition of B as a linear combination of the 

matrices {P2 j} • 

LEMMA 8. 11 {vα | αεX} is a basis lor an z"deal V in E , then {δ(va)Pi， j I 
αεX} is a basis lor V츄 in MatnE. 

PROOF. If V* is an ideal in S=MatnE, then V*=MatnV for some ideal V in 

E. Let M = (mij)εV*. Then ??%jεV and since {Vα!αCX} is a basis for V , it 

foIlows that mij= ~ CaiPa/j where C εE. Now M=(mi)=~δ(m섬Pt， j· BlIt aijVafj .. .................. ... aij 
a' '0 

δ(m.)P. i=δ( 2:: Ca .. Pa)Pi.i=2:: δ(Cαl ，Ugi ，)P￠ i 
“ a -, -, ,. a -.. . ., 

=.L:’ δ(Ca)δ(ν)P， ，=￡’ δ(Ca) {δ(va)Pi. ;J a -. -. -'" a ." -" ~'" 
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;since δ(mij) is a scalar matrix. Consequently M is a linear combination of 

{δ(Va)Pi) and it follows that {δ(Va)Pi， j' aεX} is a basis for V*. 

THEOREM 9. Let E be a Euclidean semz'r z'ng and V* an zaeal z'n. S==MatnE. 

Then there exz'st d， pεE such that Vì<'==L*Uδ(d)T/ μ，here 

L%= {(aZJ)eV치 o <rþ(aJj ) <rþ(dp) lor some aij}, 

δ(d)T감 z's maxz'mal 낌 V 1(. μIt'th respect to t'deals 01 the lorm δ(x)T/， L*nδ(d) 

Tp육 ==rþ ， and rþ restγz'cted to the entrz'es 01 the matrices z'n a basz's lor V* z's bou

nded , 

PROOF. We know that V*==MatnV for some ideal V in E. From theorem 1, 
it follows that V=LUdTp where dTp is maximal in Vand the set of all xεv 

such that rþ(x) <rþ(2dp) is a basis for V. Thus MatndTpCV*. By theorem 7, 
MatlldTp=δ(d)T양 and it follows that δ(d)T감ζV*. If b, qεE such that δ(d) 

T감Cδ(b)T/CV* then dTpCbTq <V and it follows that bTq==dTp or bTq==V. 

‘ Consequently, δ(b)T감=δ(d)Tp * or δ(b)T감= V* and it follows that δ(d)Tp츄 is 

maximal in V*. If L*= {(ai)εV치 o <rþ(a) <rþ(dp) for some ai) then it is cIear 

that V율=L찬」δ(d)T감 and L*nδ(d)T감=rþ. Now W= {vaεvlrþ(v)<rþ(2dp)} is 

‘ a basis for V and it follows from lemma 8 that {δ(Zlgtj)Pt， j | %,lgW} is a basis 

ior V*, Clearly rþ restricted to the entries of the matrices in this basis is 

bounded by rþ (2dp). 

The preceding theorem shows that the structure of ideals in the noncom

mutative semiring MatnE is almost identical to the structure of ideals in the 

EucIidean semiring E. The difference in the structures is tbe fact that in E, 

‘V=LUdTp with LndTp= {아 while in MatnE , V융=L용Uδ(d)T감 with L*nδ 

.(d)T/=rþ. 

4. Applications 

The applications below will give instances when ideals in MatnE are finitely 

generated and an example in which ideals in MatnE are not finitely gener

‘ ated. 

α. The set 01 κonnegaUve z'ntegers Z+ z's a Euclt'dean semz'rz'ng αzïh rþ: Z+• Z+ 

,gi iJen by rþ(n)=n lor all nεZ+. 11 1* z's an zaea! iχ MatnZ+ , then I*=Matn 

J for some ideal 1 z'n Z+. It lolloωs /:γom theorem 1 that rþ is bounded on a 
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‘I'oasz"s for 1. Conseqμently， 1 has a fz"nzïe basz"s. Now from theorem 9, z"t follows 

.that the entrz"es z"n the ηzatrz"ces z"n the basz"s for 1* come from the basz"s for 1 , 

‘whz"ch z"s f z"nz"te. S z"nce zνe can form only a /t"nzïe number of matrz"ces fro 11Z a 

f z"nz"te set of entrz"es, zï follows that theγ'e are only a /t"nz"te numbeγ of matrz"ces 

tιin the basz"s for 1*. Consequently, every ideal in MatnZ+ Z"S /t"nz"tely geneγated. 

b. A dz"γect aþplz"catz"on of lemma 8 can be μsed to show that zf R is a sem z"r

;z"ng such that eνery z"deal z"n R Z"S /t"nzïely generated, then every z"deal z"n Matn 

‘ R z"s f z"nzïely geneγated. 

c. If E z"s a Euclz"dean semz"r z"ng sμch that cþCa+b)>cþCa) for all a, bεE wzïh 

‘ ，a+b낯0， then every z"deal z"n MatnE z"s /t"껴tely generated. 

PROOF. Suppose 1 is an ideal in E and {ai } is an infinite irredundant basis 

for 1. Since ai~O for any z", it follows that CÞCai)>O for each Z". If z" ~j， by 

property (iv) of a Euclidean semiring, we can write 한=qal+r where r=Q or 

CÞCr) <CÞCaj ). Now r~O since this would give 와=qaj’ a contradiction that the 

basis is irredundant. Thus CÞCr) <CÞCa). Now if q~O， then by the assumption, 

φCai)=CÞCqaj+r)>CÞCqaj)=CÞCq)CÞCaj)>CÞCaj)' 1f q=O, then ai=r and cþCai)=rþCr) 

<cþCaj). 1n either case, we have cþCai)>cþCa) or CÞCai) <CÞCaj) so that CÞCai)7얘 
‘ Caj) if z"~j， Thus we can reindex the basis {at } to give {a사)} where rþCai.) is an 

;increasing sequence of integers. Consequently, given an N)O , there is ai. such that 

ψ(aZi)>N. But this contradicts theorem l which states that # is bounded on a 

basis for 1. Therefore {ai } is finite and it follows that every ideal in E is 

finitely generated. Consequently, part Cb) above assures that every ideal in 

• MatnE is finitely generated. 

We want to give an example of a Euclidean semiring E where every ideal 

:in Mat객 is not finitely generated. Let E=Q/= {xεQ+Jx는l} u {O}. It was 

;shown in [lJ that Qp + is a Euclidean semiring with cþ defined as follows: rþCO) 

=0 and rþCr)=l if r늘1. It is clear that the set N= {xεQ/J x>2} U {O} is an 

ideal in E. Suppose β is a basis for N and ß is finite , say ß= {rl' rz, "', rκ}. Let 

;r1 be the least element of ß. Then r1>2 and there exists sEN such that 2<s 

<rl' Since P is a basis for N , s=prk for some rkεβ and ρεE. Now p=강 
’ k 

;and since s <rl드rR， it follows that p<1. Consequently, PtE.E and it follows 
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that ß cannot generate N. Therefore any basis for N must be infinite. Thus. 

any basis for the ideal N*=MatnN in MatnE must also be infinite. 
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