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THE STRUCTURE OF IDEALS IN THE SEMIRING OF nXn MATRICES
OVER A EUCLIDEAN SEMIRING

By Louis Dale

1. Introduction

The structure of ideals in a Euclidean semiring £ was given in [1]. It is natural
to wonder whether or not this structure in E will carry over into the semir-
ing of #Xn matrices over E. Since a Euclidean semiring is commutative all of
its ideals are two sided. However, one sided ideals do exist in the matrix semi-
ring. Consequently, our attention will be directed toward the two sided ideals.
The purpose of this paper is to investigate the structure of two sided ideals in
the semiring of zX#n matrices over a Euclidean semiring. It i1s shown that the
structure of ideals in the matrix semiring 1S almost identical to the structure
of ideals in the Euclidean semiring. This i1s surprising since the matrix semiring
1S neither Euclidean nor commutative.

2. Fundamentals

For this paper, a semiring will be a a set S together with two binary opera-

tion called eddition (+) and muliiplication ( - ) such that (S, +) is an abelian
semigroup with a zero, (S, +) 1S a semigroup and multiplication distributes cver
addition from both the left and the right. A semiring S is said to be conunuta-
tive if (S, +) 1s commutive and S is said to have an idewntity if there is an
element ¢&S such that ee=ea=q for all e&S.

DEFINITION, A subset I of a semiring S will be called an Zdeal if I is a
subsemigroup of (S, +), SICI and ISC/.

In this case [ is called a two sided ideal. If SICI, then I is called a left
zdeal while I 1s called a 7zight ideal if ISCI.

DEFINITION. Let S be a commutative semiring with an identity e. Then
Sﬁ={xESlthere exists y&S such that x=y+e} U{0} is called principal part of

S. If S=S, then S is called a principal semiring.

| —

DEFINITION. A Euclidean semiring F is a principal semiring together with
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a function ¢: E—Z* satisfying the following properties for all ¢, 6EE.

(i) ¢(@)=0 if and only if a=0.

(ii) If a+58#0, then ¢(a+bd)=0(a).

(i) ¢(ab)=0¢(a)p(b).

(iv) If 650, then there exists p, »&FE such that e=pb+r where =0 or ¢(7)
<o(d).

If S is a semiring, then the set of all #X#» matrices over S will be denoted
by Mat S. If S is a semiring with an identity, then it is clear that Mat S is
a semiring with an identity. The #X#n identity matrix will be denoted by [

and the scalar matrix 27 will be denoted by Jd(%&). It is well known that the
center of Mat S is {0(k)&EMat, S| RES}

3. The structure of ideals in Mat E

In a Euclidean semiring E the basic ideals are ideals of the form dTp
where d, pEE and T ,= {x€E|p(x)=¢(p)} U{0}. The following structure thecrem

was proved in [1].

THEOREM 1. Let A be an ideal in a Euclidean semiring E. Then A=LUdT o
where dTp is maximal in A, L={{€SA|9() <o(dp)} and LﬂdTp:- {0}, Moreover,
LUSI[p, 2p) is a basis for A whose images are bounded by p(2p).

Our purpose here is to investigate the structure of two sided ideals in Mat E
to see i their structure 1S related to the structure of ideals in £. To do this,
we use the well known fact that if R is a ring /* isan ideal in Mat R if and

only if J* is the ring of all #X# matrices over J for scme ideal J in R. It is
easy to prove that this fact remains valid if R is a semiring. This establishes
somewhat of a correspondence between two sided ideals in Mat E and ideals in

E that is very useful.

Let «€F and T *={(¢;;)EMat Ela;;=0 or ¢(e;;)=¢(a)}. Clearly the zero ma-
trix, 0, is in T *.

THEOREM 2. If S=Mat E and a<E, then T,* is an ideal in S.

PROOF. If A=(a;), B=(§)ET,*, then ;=0 or ¢(e;)=¢le) and b;;=0 or
p(b;;)=¢(a). Now if a;+b,.70, then either .70 or b,70. If a;;70 then ¢(e;;)
#0 and it follows that ¢(e,;+0;,)=¢(a;;)=¢(e). Similarly, if 6,70, then
p(a;+0,.)=¢(b;;)=¢(a). In either case ¢(a;;+b;;)=>¢(a). Consequently, a,;+b,.
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=0 or ¢(a;;+b;;)=¢(a) and it follows that A+BET,*. Now if C=(c;;)ES,
then CAz(d’ﬁ) where dijzfcikakj. Clearly, if dij;fo, then C;1@,;70 for some ¢
and it follows that ~

o(d fj) =p(& Cikakj)}-é(%fl;j) = ¢(C£t)¢(atj)2¢(cij)¢(a)2'?5(3)-
;=0 or (&, .)=>p(a) and it follows that CAET *. Similarly,
ACET * and it follows that T * is an ideal in S.

Consequently, d

- The ideal T  in E and the ideal T * in S have a natural relationship. To see
this, let T=Mat, T . Clearly T is an ideal in S. Since T, = {xEF[¢(x)=>¢(a)} U
{0}, it follows that if Az(aij)ET, then @;;=0 or qﬁ(aij)}_gé(a). Consequently,
AET * and it follows that TCT *. On the other hand if B=(4,)&T,*, then

J)i}:O or qé(bﬁ)}_gﬁ(a) and it follows that b;; =T, Hence BET and it follows
that T, *CT. Thus T ,*=T=Mat T . This proves the following theorem.

THEOREM 3. If E is a Euclideam semirving, and a&SE, then T ﬂ*zMafﬂTa.

This theorem allows us to extend the properties of the ideal T, to the ideal
T *,
¥

THEOREM 4. Let E be a Euclidean semiring, S=Mat E and a,b&E. Then
() T *CT* if and only if o(a)=>0(b).

(ii) T *UT *=T*, where ¢(c)=min{p(a), p(b)}.

(iii) T *NT*=T*, where ¢(c)=max{p(a), p(b)}.

(iv) If {a;} is a sequence of elements in E such that ¢(a)<¢(a;, ) then

T m*zo, the zero matrix.

- PROOF. (i) From theorem 3 we have T =Mat T and T *=Mat T, Con-
sequently T *CT,* if and only if T,CT,, and T ,CT, if and only if ¢(a)>¢(b).
* (i1) and (iii). Now a, b €F implies that ¢(a)>=>¢@(b) or ¢(b)>¢(a). But (i)
assures that T *CT* or T *CT;* and it follows that T, *UT =T, or T,*U
T, *=T.>*. If ¢(c)=min{p(a), @b}, then T *UT*=T* (iii) is proved in a
similar manner.

To prove (iv) we need the following lemma.

.

LEMMA 5. If{A,|kE]} is a family of ideals in S=Mat,%, then NMa*, 4,
=Mat, (N4,). |
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PROOF. If M=(m;)&NMat A, then M&Mat 4, for each A&/ and it
follows that m,; &4, for each ¢, j. Thus m;&€N4, and it follows that (m, )=
M&Mat,(NA4,). Consequently, (Mat A,CMat (NA4,). Reversing the steps in
the above argument will show that Mat, (N4, CNMat,4,. Consequently, Mat_

(NA4,)=NMat_4,.
Proof of (iv). If {e;} is a sequence in E such that ¢(a,)<¢(e;,;) for each 7,

then ’_1’7*:}:'_3T*““lﬁh_%1 follows from (i1). Hence Ta,-Dsz,_,_ for each 7. ButNT, = {0}.

Consequently, applying lemma 5 we get
NT*, = NMat, T, =Mat, (NT a‘) =Mat, {0} =0.

!

It was shown in [1] that if £ 1s a Euclidean semiring and A4 is an ideal in
E such that T ,CA for some ¢<E, then A=KUT, where T,, is maximal in A4
and K= {x€EA4|0<op(x) <op(m)}. We now establish the matrix semiring form of

this theorem.

i

THEOREM 6. Let E be a Euclidean semiring, S=Mat 7 and V* an ideal in
S such that T *CV* for some a<E. Then there exists an m&E such that T *
is maximal in V* with respect to ideals of the form T * and V*=K*UT, * where

K*= {(az-j)EV*l0<¢(az-j) <d(m) for some az.j}.

PROOF. Let V*=Mat,V, whereV isan ideal in E. Since T *&V*, it follows
that T ,CV. Consequently, V=KUT,6, where T, is maximal in V with respect
to ideals of the form T',. Since T' CV, it follows that T *CV*. To show that
T, * is maximal in V¥, suppose &% such that T, *CT *CV*. Then T,,CT,CV
and it follows that T =T or T =V. Consequently, T *=T, * or T *=V* and
it follows that 7,,* is maximal in V*.

If K*={(a;)&€V*|0<g(a;;)<¢(m) for some @;}, then it is clear that V*=
K*UT,*.

Observe that K* can be decomposed into two disjoint sets. If we let
K*= {(az.j)EK* Of\_’gé(az-j) <p(m) for all a;;} and
K,*={(a;)EK*|there exists %, ¢,7 and s such that

0<P(a,,) <p(m) and ¢(a, )>d(m)},
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then K *NK,*=¢, K¥*=K*UK,* and V*=K*UK,*UT,* where K, *NK,*NT,*
=g, 3

If d, e<E, then dT, is an ideal in E, The scalar matrix ¢(d)=d[l has the

same properties in S=Mat_FE as d has in E. Since d(d) is in the center of S,
it 1s clear that for e€E, d(d)T* is an ideal in S. Observe that

0(d)T *= {(de;)a;=0 or ¢(a;)=p(alt.

We not establish a relation between dT, and d(d)T *.

THEOREM 7. If E is a Euclidean semiring and d, e&E, then d(d)T *=
Mat dT .

PROOF. If A=(q;;)&Mat dT, then ¢,;EdT, and it follows that ¢;=db;;
where bf.jzo or qﬁ(ba.j)zqé(a). Thus A=(dbﬁ)——'ﬁ(d)(bij)zc?(d)ﬁ’, where BET *,
and 1t follows that A€o (d)Ta*. Consequently, Mat dT,Co(d)T *. On the other
hand, let C=(cij)65(d)Tﬂ*. Then C=0(d)P for some Pz-”(pij)ETﬂ* Now p,.&
T, C=0(d)( pij) -—-(dpij) and it follows that C&Mat d T,. Consequently, d(d)-
T *CMat, dT  and it follows that Mat dT ,=0(d)T .

In order to prove our main structure theorem for ideals in S we need to
consider the basis for an ideal in S. Let P, . be the matrix with 1 as the row

r-column s entry and O elsewhere. Then it is clear that 5(@)}3,,,5 is a matrix.
with @ as the row 7-column s entry and O elsewhere. If B=();;), then P, |
BP, . is a matrix with &, as the row 7-column ¢ entry and O elsewhere. Also
Bzcb@.)ﬂ’a‘(bﬁ)z?i_ ; is a decomposition of B as a linear combination of the

matrices {P; ;}.

LEMMA 8. If {v |aEX} is a basis for an ideal V in E, then {d‘(z;a)Pm.].
a&EX} is a basis for V* in Mat F.

PROOF., If V* is an ideal in S=Mat E, then V*=Mat V for some ideal Vin
E. Let M=(m;)EV*. Then m; €V and since {V,|la&X} is a basis for V, it
follows that my;;=22 ¢, v,  Where ¢, €E. Now M=(m;)=20(m;)P, . But

&

0 Cmij)P 2, J :5(;1 Ca; ¥ )P 6,7 § accm.fva'f )P %]

J J

B Zc:r' a\(ca:‘_;')a‘(v afj)P‘i..f =Za' 5(061':'}) {a(v“ff)Pirj}
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since 5(”%;) 1s a scalar matrix. Consequently M is a linear combination of
10w, )P; ;b and it follows that {0(v )P; ;, a&X} is a basis for V™.

, 7*
THEOREM 9. Let E be a Euclidean semiring and V* an ideal in S=Mat E.
Then there exist d, pEE such that V*=L*Uc)‘(d)Tp* where
L*={(e;)&V*|0<d(a,) <p(d,) for some a;},
fa‘(d)Tp* ts maximal in V¥ with respect to ideals of the form 5(x)Ty*, L*No(d)
T =0, and @ restricted to the enmtries of the matrices in a basis for V* is bou-
nded.

PROOF. We know that V*=Mat V for some ideal V in E. From theorem I,
it follows that V:LUdTp where dT, is maximal in ¥V and the set of all x&V
such that ¢(x) <¢p(2dp) is a basis for V. Thus MatndTpCV*. By theorem 7,
Mat dT ,=0(d)T,* and it follows that 0(d)T *CV*. If b,¢&E such that J(d)
Tp*Cé‘(b)Tq*CV* then dTpCqu<V and 1t follows that qu::dTp or quzV.
Consequently, ¢ (b)Tq*za“(d)Tp* or 0 (b)Tq*:V* and it follows that ¢ (a’)Tp* 1S
maximal in V*, If L*={(a£j)EV* |0<¢(a, J.) <@p(dp) for some “gj} then it is clear
that V*:—L*U&(d)Tp* and L*ﬂc?(d)Tp*=¢v. Now W={v, €V|p(v, )<p(2dp)} is
a basis for V and it follows from lemma 8 that {5(71%)1-"3.’ jlva’_jEW} iS a basis
for V*. Clearly ¢ restricted to the entries of the matrices in this basis 1s
bounded by ¢ (2dp).

The preceding theorem shows that the structure of ideals in the noncom-
mutative semiring Mat _E 1s almost identical to the structure of ideals in the
Euclidean semiring E. The difference in the structures is the fact that in £,
V=LUdT, with LNdT,={0} while in Mat,E, V*=L*Ud(d)T,* with L*(10

(d)T = .
4. Applicatiens

The applications below will give instances when ideals in Mat E are finitely
generated and an example in which ideals in Mat E are not finitely gener-

ated. |
. The set of nonnegalive integers Z* is a Euclidean semiring with ¢ : Z*—Z*
ZGiven by d(n)=n for all n&EZ*. If I* is an ideal in Mat Z*, then I*=Mat,

I for some ideal I in Z*. It follows from theorem 1 that ¢ is bounded on a
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- wbasis for I. Consequently, I has a finite basis. Now from theorvem 9, it follows
Lhat the entries in the matrices in the basis for I* come from the basis for I,
Ghich is finite, Since we can form only a finite number of wmatlrices from a
finite set of entries, it follows that there are only a finite number of matrices

in the basis for I*. Consequently, every ideal in Mat Z* is finitely generated.
b. A direct application of lemma 8 can be used to show that if R is a semir-

iZng Such that every ideal in R is finitely generated, then every ideal in Nat,

R is finitely generated.
c. If E is a Euclidean semiring such that ¢(a+b)>¢(a) for all a, bEE with
@-+b#0, then every ideal in Mat E is finitely generated.

PROOF. Suppose [ is an ideal in £ and {e¢;} is an infinite irredundant basis
for I. Since ¢,7#0 for any ¢, it follows that ¢(e;)>0 for each ¢ If 7#j, by
property (iv) of a Euclidean semiring, we can write a;=qa;+r where r=0 or
-@(7) <¢5(aj). Now 770 since this would give ¢;=ga; a contradiction that the
basis is irredundant. Thus ¢(7) <¢5(czj). Now if ¢7#0, then by the assumption,
*ré(czi):gb(qaj+r)>¢(qaj)=¢(q)¢(aj)>¢5(aj). If ¢=0, then ae,=7 and ¢(e,)=0(r)
-<¢:(czj). In either case, we have ¢(a£)>¢(aj) or ¢(a;) <¢(czj) so that gzﬁ(czz.)?égzﬁ
-*(a]—) if 7#7. Thus we can reindex the basis {g,} to give {aik)} where ¢(ai,) is an
dncreasing sequence of integers. Consequently, given an N)0, there is a; such that
-1¢(a2-‘)>N. But this contradicts theorem 1 which states that ¢ is bounded on a

‘basis for I. Therefore {a;} is finite and it follows that every ideal in FE is

finitely generated. Consequently, part (b) above assures that every ideal in

Mat E is finitely generated.

We want to give an example of a Euclidean semiring E where every 1ideal
in Mat £ is not finitely generated. Let E=Q,'={r&Q"[x=1}U{0}. It was
:shown 1n [1] that Qp*' is a Euclidean semiring with ¢ defined as follows: ¢(0)
=0 and d(r)=1 if »>1. It is clecar that the set N={xEQp+lx>2}U{O} 1S an
1deal in E. Suppose S is a basis for NV and 8 is finite, say S={r|, 7y -, 7 }. Let
7, be the least element of 5. Then 7, >2 and there exists s&€N such that 2<s

<7;. oince P is a basis for N, s=pr, for some r, &5 and pEE. Now p= rs
k

.and since s<r7<rp, 1t follows that p<l1. Consequently, p&E and it follows
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that B cannot generate N. Therefore any basis for N must be infinite. Thus.
any basis for the ideal N*=Mat N in Mat E must also be infinite.

University of Alabama in Birmingham
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REFERENCES

[1] Dale, L., and Hanson, D.L., The structure of ideals i @ Euclidean semiring, Kyun-
gpook Math. J. 17(1977) 21—29.

[2] Dale, L., and Pitts, J.D., Euclidean and Gaussian semirings, Kyungpook Math., J..
18(1978).



