ON FINITE DIMENSIONAL C^*-SUBALGEbras
OF AF C^*-ALGEBRA

SUN YOUNG JANG

1. Introduction

The set of traces on a C^*-algebra is a very useful invariant of the algebra and there have been some significant recent advances concerning the relationship between traces, finiteness and comparability of elements. For example a simple C^*-algebra with a finite trace is a finite algebra [3]. An approximately infinite dimensional algebra, that is AF C^*-algebra, is a C^*-algebra which is an inductive limit of a sequence of finite C^*-algebras. The study of AF C^*-algebra was begun by Bratteli [2] following earlier more specialized studies by Glimm [6] and Diximier [4]. Elliott showed that if A is an AF C^*-algebra, then A is classified up to isomorphism by $K_0(A)$, considered as a partially ordered abelian group, [5]. The relation between trace and $K_0(A)$ has been studied by J. Cuntz and G.K Pedersen. In this paper we study the finite dimensional C^*-subalgebras of AF C^*-algebra by using the trace and the partially ordered abelian group K_0.
2. Preliminaries

Let A be a C-algebra. A trace on A is a function $\phi: A_+ \to [0, \infty]$ such that

i) $\phi(\alpha x) = \phi(x)$ if $x \in A_+$ and $\alpha \in \mathbb{R}$,

ii) $\phi(x + y) = \phi(x) + \phi(y)$ if x and y belong to A_+,

iii) $\phi(u^* xu) = \phi(x)$ for all X in A_+ and all unitaries u in A.

In here A is a C^*-algebra with unit containing A as a closed ideal and A_+ is the set of all positive elements in A. We say that ϕ is finite if $\phi(x) < \infty$ for $x \in A_+$ and ϕ is semi-finite if for each $x \in A_+$, $\phi(x')$ is the supremum of the numbers $\phi(y)$ for those $y \in A_+$ such that $y \leq x$ and $\phi(y) < +\infty$. Clearly ϕ may be unbounded functional on A. $y \leq x$ means that $x - y \in A_+$ for $x, y \in A$. If a trace ϕ is finite, then ϕ can be extended to A as a positive linear functional on A. ϕ is lower semi-continuous if for each $\alpha \in \mathbb{R}_+$, the set $\{x \in A_+ | \phi(x) \leq \alpha\}$ is closed. The trace has deep relation with the type of von Neumann algebras. A cone M in the positive part of a C^*-algebra A is called hereditary if $0 \leq x \leq y$ and $y \in M$ implies $x \in M$ for each x in A. A $*$-subalgebra B of A is hereditary if B^* is hereditary in A.

Lemma 2 ([3]). Let B a hereditary C^*-subalgebra of A. Each finite trace ρ on B has an extension to a semi-finite lower semi-continuous trace $\hat{\rho}$ on A.
3. Abelian group K_0

Let A be a $*$-algebra. We present the construction of $K_0(A)$, which in genera yields a pre-ordered abelian group, built from the family of self adjoint projections in all matrix algebras over A. Let e, f be projections in A. e and f are $*$-equivalent, written $e \equiv f$; if there is an element $w \in A$ such that $w^* = e$ $ww^* = e$ $w^*w = f$. We define

$$P(A) = \bigcup_{n=1}^{\infty} \text{projections in } M_n(A).$$

In here $M_n(A) = \{ [a_{ij}]_{m \times n} | a_{ij} \in A \}$. Given $e, f \in P(A)$ $e \equiv f$ mean that

$$\begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix} \equiv \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$$

for some suitable sized zero matrices. And define $e, f \in P(A)$ to be stably $*$-equivalent, written $e \preceq f$ provided

$$e \oplus g \equiv f \oplus g$$

for some $g \in P(A)$, i.e.,

$$\begin{bmatrix} e & 0 \\ 0 & g \end{bmatrix} \equiv \begin{bmatrix} f & 0 \\ 0 & g \end{bmatrix}.$$

For $e \in P(A)$, we use $[e]$ to denote the equivalence class of e with respect to \equiv. If $e_1, e_2, f_1, f_2 \in P(A)$ with $e_1 \equiv e_2$ and $f_1 \equiv f_2$, then $e_1 \oplus f_1 \equiv e_2 \oplus f_2$. Hence we see that \oplus induces a well-defined binary operation $+$ on the set of equivalence classes $P(A)/\equiv$, where $[e] + [f] = [e \oplus f]$ for all $e, f \in P(A)$. Then the operation is commutative and associative. Moreover the semi-group $(P(A)/\equiv, +)$ satisfies cancellation law: so $(P(A)/\equiv, +)$ is an abelian group.

Denote
\[P(A)/\approx_0, +) = K_0(A). \]

For any \(*\)-algebra \(A\), we set
\[K_0(A)_+ = \{ [e]| e \in P(A) \}. \]

For any \(x, y \in K_0(A)\) we define
\[x \leq y \text{ on } K_0(A) \text{ if and only if } y - x \in K_0(A)_+. \]

The relation \(\leq\) \(K_0(A)\) is a pre-order. A \(C^*\)-algebra \(A\) is an \(AF\) \(C^*\)-algebra if \(A\) is the norm-closure of the union of finite dimensional \(C^*\)-algebras \(A_n\).

Theorem 3.1 ([1]). If \(A\) is an \(AF\) \(C^*\)-algebra, then \(K_0(A)\) is a partially ordered abelian group.

Proposition 3.2. Let \(A\) be a \(AF\) \(C^*\)-algebra and \(p, q\) be projections in \(A\). If \(\phi(p) \leq \phi(q)\) for all nonzero traces \(\phi\) on \(A\), then \([p] \leq [q]\) in \(K_0(A)\).

Proof. We may assume that \(p, q\) lie in a finite dimensional subalgebra \(A_1\) by replacing \(p\) and \(q\) by equivalent projections. By [2. Theorem 2.2], we can find an increasing sequence \((A_n)_{n=1}^\infty\) of finite dimensional subalgebras containing \(A_1\) and \(A\) is the norm closure of \(\bigcup_{n=1}^\infty A_n\). If \(\phi(p) \leq \phi(q)\) for all trace \(\phi\) on \(A\), then \(\phi(p) \leq \phi(q)\) for all trace \(\phi\) on \(A_n\) for all \(n\). If not; let \(e\) be the unit of the finite dimensional \(C^*\) subalgebra \(A_1\). There exists an integer \(n_0\) and a trace \(\phi_{n_0}\), on \(A_{n_0}\) such that \(\phi_{n_0}(p) > \phi_{n_0}(q)\) and \(\phi_{n_0}(e) = \alpha\), for some \(\alpha > 0\). Let \(\phi'_{n_0} = \frac{1}{\alpha} \phi_{n_0} |_{A_0} e\). Since \(eA_1e = A_1 \subset eA_{n_0}e\), \(\phi'_{n_0}\) is a trace on \(eA_{n_0}e\) such that \(\phi'_{n_0}(p) > \phi'_{n_0}(q)\) and \(\phi'_{n_0}(e) = 1\). Then for \(n > n_0\) there...
exists a trace ϕ_n on $e\Lambda_n e$ such that $\phi_n|_{\Lambda_n} = \phi_n$. Hence there exists a trace ϕ_n on $e\Lambda_n e$ such that $\phi_n(p) > \phi_n(q)$ and $\phi_n(e) = 1$ for $n > n_0$. Let $e\Lambda e = B$ and $\tilde{\phi}_n$ be an extension of ϕ_n to a state on B. Since B has a unit e, $\{\tilde{\phi}_n\}$ has a weak*-limit $\tilde{\phi}$. Then $\tilde{\phi}$ is a tracial state and $\tilde{\phi}(e) = 1$.

Since B is a hereditary subalgebra of A and $\tilde{\phi}|_{\Lambda_n}$ is a finite trace on B, by Lemma 2.1 $\tilde{\phi}$ extended to a trace on A. Furthermore $\tilde{\phi}(p) > \tilde{\phi}(q)$ and this contradicts to the hypothesis. Hence $[p] \leq [q]$ in $K_0(A_n)$. Since $[p] \leq [q]$ in $K_0(A)$ if and only if $[p] \leq [q]$ in $K_0(A_n)$ for some n, $[p] = [q]$ in $K_0(A)$.

Since $K_0(A)$ is a partially ordered group for an AF C*-algebra A, if p, q are projections and $\phi(p) = \phi(q)$ for all traces ϕ on AF C*-algebra A, then $[p] = [q]$ in $K_0(A)$.

Proposition 3.3. Let A be an AF C*-algebra and p, q be projections in A. Then $[p] = [q]$ in $K_0(A)$ if and only if $p \geq q$ in A.

Proof. Clearly $p \geq q$ implies $[p] = [q]$. In AF C*-algebra by [1. Lemma 20] if $[p] = [q]$ in $K_0(A)$, then $\begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix} \ast \begin{bmatrix} q & 0 \\ 0 & 0 \end{bmatrix}$ for some suitable sized zero matrix. Hence there exists a $w \in M_n(A)$ such that $w^*w = \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix}$ and $ww^* = \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$ for some n. Since e, f are in A and the zero matrices in the above is of the same sized, there exists a partial isometry $w' \in A$ such that $w = \begin{bmatrix} w' & 0 \\ 0 & 0 \end{bmatrix}$.

4. Main results.

Let A be a $*$-algebra. A set $n \times n$ $*$-matrix units in A is a set of $n \times n$ matrix units $\{e_{ij} | i, j = 1, \ldots, n\}$ of elements of A such that $e_{ij} e_{km} = \delta_{jm} e_{im}$ and $e_{ij}^* = e_{ij}$ for all i, j.

In this case e_{11}, \ldots, e_{nn} are orthogonal projections. A $*$-matricial subbasis in A is a set $\{e_{ij}^i | i = 1, \ldots, k, p, q = 1, \ldots, n(i)\}$ of elements of A such that

1) $\{e_{ij}^i | p, q = 1, \ldots, n(i)\}$ is a set of $n(i) \times n(i)$ $*$-matrix units for each $i = 1, \ldots, k$;

2) $e_{ij}^i e_{ij}^{i'} = 0$ for all i, j, p, q, r, s with $i \neq j$.

Then $e^{(i)} = \sum_{p=1}^{n(i)} e_{ij}^p$ are mutually orthogonal projections in A. If a $*$-algebra A has a $*$-matricial subbasis $\{e_{ij}^i\}$ that spans A, then $\{e_{ij}^i\}$ is a $*$-matricial basis for A. In this case $\sum_{i=1}^k \sum_{j=1}^{n(i)} e_{ij}^i$ is a unit of A. Thus a $*$-algebra is matricial if and only if it has a $*$-matricial basis.

Theorem 4. Let A be an AF C^*-algebra with unit acting on a separable Hilbert space H. Suppose that $M \subset A$ and $N \subset A$ are $*$-isomorphic finite dimensional C^*-subalgebras of A. Then there exists a unitary element u in A such that $uM u^* = N$.

Proof. Suppose that $\{E_{ij}^k | i, j = 1, \ldots, n_k, k = 1, \ldots, n\}$ and $\{F_{ij}^k | i, j = 1, \ldots, n_k, k = 1, \ldots, n\}$ are $*$-matricial basis of M and N respectively. We may assume that M, N have the same unit with A. We show that there exists a partial
isometry \(V^k \subset A \) with initial projection \(E_{i1}^k \) and terminal projection \(F_{i1}^k \) for \(k = 1, \ldots, n \). Let \(U = \sum_{k=1}^{n} \sum_{i=1}^{n_k} F_{i}^k V^k E_{i1}^k \).

\[
u E_{ij}^* = \left(\sum_{k} \sum_{i=1}^{n_k} F_{i}^k V^k E_{i1}^k \right) (E_{ij}^*) \left(\sum_{p} \sum_{i=1}^{n_p} F_{i}^p V^* E_{i1}^p \right)
\]

\[
= \left(\sum_{k} \sum_{q} F_{qi}^k V^k E_{i1}^k \right) (E_{ij}^*) \left(\sum_{p} \sum_{i=1}^{n_p} E_{ip}^k (V^*) F_{ip}^p \right)
\]

\[
= F_{i1}^r V^r E_{ij}^r E_{ij}^r (V^*) F_{ij}^r
\]

\[
= F_{i1}^r V^r E_{i1}^r (V^*) F_{ij}^r = F_{ij}^r.
\]

Therefore

\[
u M \nu^* = N \quad \text{and} \quad \nu \nu^* = \sum_{k, q, \psi, \sigma} (F_{qi}^k V^k E_{i1}^k) (F_{ip}^q V^* E_{ij}^q)^*
\]

\[
= \sum_{k, q, \psi, \sigma} \delta_{k, q} \delta_{\psi, \sigma} F_{qi}^k V^k E_{i1}^k E_{ip}^q (V^*) F_{ij}^q
\]

\[
= \sum_{k, q} F_{qi}^k V^k E_{i1}^k E_{ij}^q (V^k)^* F_{ij}^q
\]

\[
= \sum_{k, q} F_{qi}^k = I
\]

Similarly \(\nu^* \nu = I \) Hence \(\nu \) is the unitary that we want.

Let \(\phi \) be a trace on \(A \). Let \(p_i^k = EE_{i1}^k, Q_i^k = EF_{i1}^k \) for central projection \(E \subset A \). Then

\[
\sum_{k=1}^{n} \sum_{i=1}^{n_k} p_i^k = \sum_{k=1}^{n} \sum_{i=1}^{n_k} Q_i^k = E.
\]

We put

\[
E_i^k = \sum_{i=1}^{n_k} E_{i1}^k
\]
Let
\[S(i) = \sum_{k=1}^{n} E^k - E^k_{ii} + E^k_{li} + E^k_{il} \]
and
\[V(i) = \sum_{k=1}^{n} F^k - F^k_{ii} + F^k_{li} + F^k_{il} \]

Then
\[S(i) P^k_S(i)^* = \left(\sum_{i=1}^{n} E^i - E^i_{ii} + E^i_{li} + E^i_{il} \right) \left(EE^k_{ll} \right) \]
\[\cdot \left(\sum_{r=1}^{n} E^r - E^r_{ii} + E^r_{li} + E^r_{il} \right)^* \]
\[= \left(\sum_{i=1}^{n} \delta_{ik} EE^i_{ll} E^k_{li} - EE^k_{ll} E^k_{li} - EE^k_{li} E^k_{il} \right) \]
\[+ EE^k_{li} E^k_{il} + EE^k_{ii} E^k_{il} \]
\[\left(\sum_{r=1}^{n} E^r - E^r_{ii} + E^r_{li} + E^r_{il} \right)^* \]
\[= \sum_{r} \delta_{rk} EE^k_{ll} \left(E^r - E^r_{ii} E^r_{li} + E^r_{il} \right) \]
\[= EE^k_{li} E^k_{il} - EE^k_{ii} E^k_{il} E^k_{li} - EE^k_{il} E^k_{li} + EE^k_{ll} E^k_{il} \]
\[+ EE^k_{li} E^k_{il} = EE^k_{ll} = P^k_{ll}. \]

Moreover \(S(i) S(i)^* = S(i)^* S(i) = \sum_{k=1}^{n} E^k = I. \) By similar computation \(V(\alpha) Q^k_{l} V(\alpha)^* = Q^k_{l}. \)
ON THE FINITE DIMENSIONAL C^*-SUBALGEBRAS

Since $S_{(\ell)}$, $V_{(\ell)}$ are unitary and trace is invariant under inner automorphisms, $\phi(EE^k_1) = \phi(EE^k_{ij}) = \phi(EE^k_{jj}) = \phi(EE^k_{jj})$ for all $k=1, \ldots, n$.

Since E is a central projection, $\phi(E^k_1) = \phi(F^k_1)$ for all trace ϕ on A. By Proposition 3.2 $[E^k_1] = [F^k_1]$ in $K_0(A)$ and by Proposition 3.3 there exists a partial isometry $V^k \subseteq A$ with initial projection E^k_1 and terminal projection F^k_1.

References

University of Ulsan
Ulsan 690
Korea

Received May 11, 1988