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POINTWISE DECAY ESTIMATES OF SOLUTIONS
OF THE GENERALIZED ROSENAU EQUATION

Mi1 A1 PARK*

1. Introduction

Consider the following initial-value problem for the generalized Rose-
nau equation ([5], [6]):

(1.1) U+ tUg + F(u)r + Ugzrre =0, TER, t>0
u(z,0) = ¢(z), z € R.
= Ci 41 . . .
Here F(u) = Z uPT (¢; € R, p; > 0 integers). It is of interest

‘~ p;+1
to investigatet tlhe behavior of solutions of the initial value problem
(1.1). It has been proved in ([5], Chapter I) that (1.1) possesses global
solutions for initial data p € H§(R).

The purpose of this paper is to prove Theorem 1 below, which says
that solutions with small initial data ¢ decay like t—1/5 in the supre-
mum norm (if each p; > 6). This is an analogue of Albert’s result
([2]) on the L™ decay of solutions of the generalized Benjamin-Bona-
Mahony equation.

2. Statement and proof of the main result

For 1 < p < oo, the symbol L? will denote the space of Lebesgue
measurable functions f : R — R with the norm

1Al =( 1 @pdy e,
while L denotes the space of measurable functions such that || f||ze =
esssupzer|f(z)| is finite.
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The Fourier transform is defined, for smooth functions f(z) with
compact support, by

k) = /_ ¥ %2 f(z)dz, k€R.

The definition is extended by continuity to the space of tempered dis-
tributions on R, and the Sobolev space H* (s € R) is defined to be

the subspace of tempered distributions f such that f(k) is a function
and the norm ||f||a = (f°°_(1 + |k[?)°| f(k)[?dk)Y/? is finite. (See [4],
[8] or [9].)

THEOREM 1. Suppose p* = 1I<niign pi > 6. Then there exists 6 > 0

such that if |lp|lr + |l¢'|lr + ||9_0"_H4 < 8, then the unique solution
u(z,t) of (1.1) satisfies

lu(z,t)] < CA +8)7/°

for all t > 0 and =z € R, where the constant C does not depend on x
ort.

The proof of Theorem 1 uses the estimate stated in Proposition 1
below for solutions of the linearized problem
(2-1) Ug + Uz + Uzzzat =0

u(z,0) = ¢(z).

This is the linearization of (1.1) about the solution v = 0. Zero is a
solution since F(0) = F'(0) = 0.

Using the Fourier transformation method, one finds that the solution
of (2.1) is given by

u(z,) = o /_ Z eihe G k),
where

ho(k) = g(k) — ok
(2:2) g(k) = 1% and

a=7.
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PROPOSITION 1. There exists a constant C > 0 such that
[ @)k < Ol + lellae)(1+ 072
—_ 00

foralla € R and t > 0.

We first prove Theorem 1, assuming Proposition 1. Let Sip(z) de-
note the solution u(z,t) of the linearized problem (2.1). Then solutions
of the inhomogeneous equation

Wy + Wy + Wrzzer = (G(.’E,t))z

may easily be seen to satisfy the variation-of-parameters formula

w(z,t) = Si(w(z,0)) + / Ste—0(K % Gz, O))d,

where K(z) = "7"(6"%2”'*32&'.’ + e"%zld_’g“‘) and * denotes convo-
lution with respect to the z variable.
Hence the solution of (1.1) satisfies the integral equation

t
(2.3) u(z,t) = Spp — / S(t—r)(K * F(u))dr.
0
Moreover, differentiating (1.1) yields
(uz)t + (uI)I + (uz)zzzzt = —(F,(U)uz)x
and v = u, satisfies
t
24) o) =S¢~ [ Suon(K s Fluoir
0
Now define

9®) = sup {(lu(r)llze + flua(7)ll2=)(1 + )5+ |lullga}.
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It will be shown that
(2.5) g(t) < C(llellzr + il + lellas + > a(®)?+).
=1
We will make use of the two estimates
(2.6) WK *liz2 < IKl[z:ll#llz: < Cli#bllze,
(2.7 IK = ¢|lae < Cll¢b]|ae-
Inequality (2.6) is a standard one. To show (2.7), we have, for all
s€R,
w i
1K *dllae = ([ 1+ k) (K «$)*dk)'/?

= ([ a+ Ry ERB

~ ([ a+ By PR
(g It 2
<( °°(1'+k2)’|¢|2dk)1/2

—00

= [l ae-

Thus the proof of (2.7) is complete.
Now, from (2.6) and Proposition 1 one has

<( (1+k2)‘

lollze < CQlle'lze + ' Nms)(1 +£)~Y/°

+ [ (K (Pl
0
IO (E @)X+ (6 - 7)o,

1K+ (F'(uw)o)(n)lizr < CI(F (w)o) ()]s
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<O Y w (Dl e llu(r)o(r)ll e

< C Y (NS llu(r)llzsllo(r)lzs

i=]1

n
<CY g(P 1+ )
i=1
The last inequality is from the following estimates:

a() 2 (lu(m)llz=+luz(Tllz= )1 + 1) + [lullne
2 (flu(m)llze +lluz(r)ll=)(1 + 7)1/°
a1 +7)78 2 lu(r)llze + llus(r)l|ze
2 Jlu(r)lle,

so [lu(7)IIB* < q()P (1 +7)"F" and
2lu()lzallv(r)llze < lu(IZz + lo(r)E2 = lu(Ez + lus(r)li3
< Jlu(l3ps < ot)
Also,
I+ (F'(uy)llgs < CIY wP(r)o(r)llgs = C Y [[w? (T)us(r)||as
=1 =1
< €Y Al () ual(r)) o
+ 1P 2 () (o)) Ptz (7] 2
+ JuP () (7)) 2

+ "um_I(T)ur("')“:u("')"L’
+ P (T)uzzea(T)l L2 + o (T)uz(7)l| L2}

< C Y Allu(IES lua () e lua(r)I1 L2

=1
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+ (I () F o luze () 22

+ lle(PIE= oo ()l 2o faa ()] 22

+ “u("')"m-l fluz(m)l e luzza(T)l 22

+ u()Es tzzea(T)ll 22 + llu(rHIZe llur(T)l|z2}

< c}_j(q(t))ffﬂ(l +r)r

=1

Consequently,
t —P; 1 1
/ 1+ ‘r)l 5 (A4+@E—7))s5dr<C(1+1t)"s

0

for p* = f?‘? pi > 6, since (letting *; denote convolution on [0, t])
3

/(1+T) S (=) R = (L 7)) e (1)

and
1—p;
(2.8) (1 +7)% (1+T)T‘||Lw[o q
<A+ 7)o gl @ +7) F lpap0,g
= ([ @+ tant (/ (140 i}
0
<CA+t)HA+8)T
< C(1+8)"% for p*>6.
It follows that
29) A+ E|olle <INz + el + Y )P}
=1

Next, from (2.3) one has

lullz= < Clllplls + lellas)(1 +)7%
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+ [ o+ Pl
+ [|(K * F(u))()lla=)(L + (¢ — 7)) "3 dr.

But
I » F)(r)li < RPN
<O Y I
<Oy Orra ey’
and

(K * F(u))(T)l|ns < C Z [P (7) | s

<Y (Il () (u )P (1)l e

=1
+ [[uP T (T (T)uza (7) |2
+ IIu”"(T)um(T)Ilm + lP () 2}

< CZ{HU(T)II = Nl ()7 fua()ll 22

=1
+ |u()IZE o () £oo ltzo (7]l 22
+ fulBic luzazllze + el llufl2}
n
<CY (gt) (1 +1)7F

=1

Again, for p* > 6 it follows that

(210) A+ fullze < C{llele + lellas + (e},

i=1
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Finally, from (2.3) one has
@1 ollas < Ievlls + [ NS0 ry K * F@lgadr
< Cllells + [ e+ F@lld)
< Clllgs + / @)l gadr)
< Cllplle + (@) + [[(147) Far)

i=1

< Cliellgs + Z(Q(t))”""l)-
i=1
Adding (2.9), (2.10) and (2.11) gives (2.5).
Choose a number > 0 such that n > C Y ., n?*!, where C
is the same constant appearing in (2.5). Choose § > 0 such that if

(lellzr + ll'llzr + lells) < 6 then ¢(0) < n and

(2.12) 7> C{llellzs +1#'lls + llellas + D nP+'}

=1

Then [[ollz: + [l¢'llz: + ll¢lla+ < 6 must imply ¢(t) < n for all £ > 0.
For otherwise, by the continuity of ¢(t), we would have ¢(t) = 75 for
some ¢, and (2.12) would contradict (2.5).

3. Estimate for the linearized equation

We need Lemmas 1-7 to prove Proposition 1.

The following four lemmas hold under the stated hypotheses. That
is, in Lemmas 1-4, g can be any function and h,(k) = g(k)—ak, subject
to the stated hypotheses. Beginning with Lemma 5 the particular
choice of g given by (2.2) will be used. See [2] for proofs of Lemmas
1-3.

LEMMA 1. Suppose k! (k) and hl(k) do not vanish fora < k < b.

Then
githa(k) 1 1
| '/a <3 [|h NOIMEAC]

forala e R and t > 1.
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LEMMA 2. Suppose ¢"(k) # 0 for ky < k < ky. Then there exists a
constant C > 0 such that

k
l : eitha(k)dk| < Ct—1/2
ky

foralae € R, t > 1.

LEMMA 3. Suppose ¢"(k;) = 0, ¢"'(k1) # 0 and g"(k) # 0 for
k1 < k < ky. Then there exists a constant C > 0 such that

k
I : eiha(k)tdkl < Ct—l/a
k1

for all « € R, t > 1. The same result holds if g"(k;) =0, ¢"'(k2) # 0
and ¢"(k) #0 for ky < k < k.

Lemuma 4. Suppose ¢"(kr) = "(ky) = g (ky) = 0, gt®(ky) # 0
and ¢"(k) # O for ky < k < k. Then there exists a constant C > 0
such that

k
| 2 eiha(k)tdkl S Ct-—-l/s
ky

for all « € R, t > 1. The same result holds if g"(k;) = ¢"'(k2) =
g0 (kz) = 0, g (k2) # 0 and ¢"(k) # 0 for ky < k < ks.

Proof. We may assume that g"(k) > 0 on (ky, k;) and that ¢{*)(k,)
# 0. The other cases are similar. Define a; = ¢'(k;) for ¢ = 1,2; and
for any a € R, define k, € [k, k2] by

ko = Fy, i oa<k
k. (ka) =0 if ag<a<as
ka=k2 if a_>_(12.

If @ € [0y, az], then R (k,) = 0, and the Taylor expansion of hl (k)
about k = ko is

(3.1)  hL(k) = g"(ke)(k — k) + "'(k")(k ko)?
+ we(k“)(k ko )® + g (k")(k ko)t

+ O((k — ka)®)-
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Now expand g"(kq),g" (ka), 90? (ko) and ¢t”)(kq) about k, = ki to
obtain

62 (k)= Tk, k) 4 Ok, ~ k1)
63 (k) = TED k)7 +O((ka— b))
(34)  g(ka) = (k) (ke — k1) + O((ke — 1))
(3-5) g(v)(ka) = g(v)(kl) + O(ka — k1)

and substitute (3.2)-(3.5) into (3.1). The result is

(36) ) = Lo G ke~ k)

+ g(v)(kl)(ka _ k1)2(k _ ka)2

F L2E)  ye— ko)®

(k1

+7 )(k ka)*+R

where R is of fifth order in (ko — k1) and (k — k). Since (ky —k1) — 0
and (k — ko) — 0 as a — a3 and k — ky, it follows from (3.6) that
there exist as > a; and k3 = ko, > k; such that for all o € [ay,a3]
and k € [k, k3],

(3.7)
e (k)] = C(lka — k1P| — kol + ko — k1 [* |k — Eal?)
if |k — kol < |ka — ki
(3.8)
|ho(k)| 2 C(lka — 1} |k — kal® + |k — kal*)
if |k — ka| 2 ko — K1

where C is independent of a. Moreover (3.7) and (3.8) also hold for
a € [a; — n,a3 + 1] for some n > 0, since |RL(k)] > F|hh, (k)| for
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a € [0y =1, 1] and |kl (k)| > 31k, (k)| for a € [as, az+7] for suitable
n > 0.

By assumption, ¢"”(k) # 0 on [k3, k2] and so the desired estimate for
f ett=(Mtdk follows from Lemma 2. Furthermore, if o ¢ [a; — 7, a3 +
17], then |Al (k)| > C for all k € [k, k3], and hence the desired estimate
for f,: 3 etha (M)t gk follows from Lemma 1. Therefore, it is enough to

estimate f eth=(F)tdk when a € [a; — 5, a3 + 1], and we may assume
henceforth that (3.7) and (3.8) are valid.
Define 6 = |ko — k1|, and consider first flk—ka|<5 etha®igp If § <

t~1/5, then this integral is majorized by 2¢=1/5. If, on the other hand,
§ > t71/5 write

‘/ eiha®t gp) < | eiha ()|
Ik“kalsé lk—kalst—”s

+] / etha (M) gk,
=M< k~kq|<8

The first integral on the right-hand side is again majorized by 2t~1/3,
while for the second integral, (3.7) and Lemma 1 yield

2
|-/t"1/5_<_|k—ka|<6 ‘h (k)tdkl =7 [0(63t‘1/5 62t—2/5)
< cts,
It remains to consider
ks
/ eih,,(k)tdk = eih"(k)tdk.
k€[ky,ks) koa+6

lk~kea|>6

Again, look separately at the cases § > t~1/5 and § < t~1/5. In the
first case, (3.8) and Lemma 1 imply that

ks
iha(B)t gLl < 2
[ eetran < 2

< Ct71/5.
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In the second case, write

ks ko+t~2/%
l_ eih“(k)tdkl < I Cih“(k)tdkl
ko+é kat6
kg .
+] eha(BY gL,
i‘a +t-1/%

Then the first integral on the right-hand side is majorized by ¢~1/5,

while the desired estimate for the second integral is again obtained

from (3.7) and Lemma 1. Thus the proof of Lemma 4 is complete.
Now we assume specifically that k, is given by (2.2).

LEMMA 5. There exists a constant C > 0 such that

I/ eiha(k)tdkl < Ct--l/4
2L[k|Ser/re ‘ '

forala € R and t > 0.
Proof. By symmetry, it is enough to prove the result for
1/10 |

j; e*h=(®)tdE. For a < 0, define k, € [2,00) by

ko=2 if a<g'(2)

ki (ka)=0 if ¢'(2)<a<.

Note first of all that ‘
Jim Eg'(k)| =3, lim ¥°|g"(k)| =12 and
Jim °|g" (k)| = 60.

In particular, there exists C > 0 such that for all k € [2, c0),

PRI < o "B < o and [g"(B)| < -
Next, let r be any number such that 0 <r <1 and (1—r)* > %; and
i 0 s 3 D, o e o
(3.9) 3(1—p) < Klg'(k)] < 3(1+p)

12(1 - p) < k°|g"(k)| < 12(1 + p)

60(1 — p) < K®|g" (k)| < 60(1 + p)



Pointwise decay estimates 273

By the way how k, is defined, Al ,(kq) = 0 for ¢'(2) < @ < 0. So
1-3k%

Ry — @ =0 and

= ~(2a+3) + {/(2a + 3)? — 4a(a —1)
o« 20 |

Since k, > 2,

~(2a +3) — 16a — 9 and  lim kg = oo.

20 a—0-

Finally, n > 0 can be chosen so small that if a € [—7,0), then ky > —1-%:
Then the following estimates hold:

(3.10) |RL (k)| > = |k — kol i |k—ko| <rkq
C .
(3.11) |AL (k)| > > if |k—kq|>rka
where C > 0 is independent of a.
To prove (3.10), assume |k—kq| < rk, and write bl (k) = ¢"(ka)(k—
ko) + L (k — ko)? where |z — ka| < [k — ka| < rka. From (3.9) it
follows that

BB 2 I (o)l — kol — Nk — 2

> Ok o] - 99%5—’2@ ~ ko)?

> Btel o - gy - PE -
> o - - T
zlii-gk“—'uz(l— p) - 1((;(”)’:) },

since r satisfies (1—-r)* > 2, s0 i r), < 1, and the constant in brackets
is positive.
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For (3.11), consider separately the cases 2 < k < M, M <k <
ka(l1 —7) and kq(1 — r) < k. Since Al (k) = ﬁ—ii% — a is bounded
away from zero when k € [2, M] and « € [—7,0), (3.11) is obvious in
the first case. In case M < k < ko(1 —r), it follows from (3.9) and the
definition of p that

Iha (k)] = [hG (k) — ho(ka)| 2 |g'(K)| — lg' (k)|
>31-p) 31+p)

7z ki
S 31=p) 3Q+p(1-r)
- k4 k4
s (A -p)—-(1+p)(1-r)*)
> =
c
2 re

Finally, if ko(1 +r) < k, we have, for some z in [ka, ka(1+1)],

okl 2 |he (ka1 + )| = [ho(ka(l + 1)) — hy(ka)l

C c C
= lg"(2lrka 2 ()rka 2 57z 2 77

Nno .
To estimate f; e et (F)tdL, first consider the case t1/1° < kqo(1—r).
Then from (3.11) and Lemma 1, it follows that

/10
. 2 1 i
tha(k)t < ol
[ e tran < [lh:,(z)l * lh:,(tlfw)l]
<20+ oer)
S C(t—l +t—3/5)
< ct3s,

Therefore, it suffices to consider the case

(3.12) 110 > k(1 - 7).
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We write the integral to be estimated as
(3.13)

{1710

/ eiha(k)tdk
2

= /2<k<t1/1° 6'h°(k)tdk+/2<k<t1/1o e'h"‘(k)tdk.
[k=kg|<rke |k=ka|>rka

Again, using (3.11) and Lemma 1, the second integral on the right-hand
side of (3.13) is dominated by

%[C + ot < o35,

Now, let A = (Et;)l/ % and write the first integral on the right-hand side
of (3.13) as

(3.14) / et (Mg + / ethe (B,
[k~ ka] <A A<|k—ka|<rke

The first integral in (3.14) is dominated by 2\, whereas for the second
integral, (3.10) and Lemma 1 give

; c, 1 C (ko)°

tha(k)tdk < Z - =2 o

e
oo =7 = T e
= C(k3/t)'/? = O

Therefore, it is seen that (3.14) is dominated by CA. However, from
(3.12), we have

k3 £1/10y5\ 1/2
/\_:(7)1/250(( . ) )
< ct V4,

Thus, it shown that
t1/1o

I/ elha(k)tdkl S Ct—1/4
2

and the proof of Lemma 5 is complete.
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LEMMA 6. There exists a constant C > (0 such that
| fig<orrno eha(Btdk| < Ct~Y/5 foranya € R, t > 1.

Proof. Since g"(+4 5 "'(i[) # 0 and ¢"(k) # 0 for

—2<k< - f f<k< 11<k<[ \/-<k<2we

5

[—4 -5,—1], 1, {/;] and [‘4/;, 2] and since ¢"(0) = ¢"'(0) = ¢(*?(0) =
0, ¢™(0) # 0 and ¢g"(k) # 0 for -1 < k < 0and 0 < k < 1, apply
Lemma 4 to the integral of e?*=(¥)* over the intervals [-1,0] and [0, 1]
and apply Lemma 5 on the intervals [—¢1/1°, —2] and [2,#'/19].

LEMMA 7. There exists a constant C > 0 such that

|/|kl<t1/10 eP=®G(k)dk] < Cllp|l et /5

apply Lemma 3 to the integral of e**+ (¥}t over the intervals [-2,

forallp € H®, a e R and t > 1.
Proof. For k > 0, we have

| / e (G (k)dH]
/10
s/ |G (k)| dk

$1/10
o0 o0
<(f | KRwrare [ ke
ti/10 $1/10
X0
. S
([, U+ PR (- k1)
< Cllglgst™.

Now we prove Proposition 1.

Proof of Proposition 1. For 0 < t < 1, we have

| / eihe G ) dk|
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<[ " Bkl

oo

< / (1+ (K2 13(k)[2dk) 3 / mf)”?‘”“)m
< Cllellar < Clliglon + Ielas).

It suffices to conside’f the case t > 1.
Let g(k,t) = e'(:rﬁ)tX{|k|<t1/1°}- Then

[ e rptiar = [ T G
=1 [ ek piiae
- O

Ik e1/10

: '/ " e (g(a, 1) + p(2))dk|
* 8”"’”}1“_1/5 by Lemma 7,
< il;llé(:c,t) + ()] o + Cllolgst=75.
However, Lemma 6 asserts that

oo .
ld(e,t)llze = | [ e *=eF@dk| < ct1/5,

-0

Therefore,

liz,2) » (@)l < iz, Dllz=lellze
< Cligllt™".

Thus it is proved that
[ e ®p)a < Clplas +lpllue)e.

Since t > 1, one has t~1/3 < C(1 + t)~!/% for C > 2 and the proof of
Proposition 1 is complete.
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REMARK 1. The a.ssﬁmption that minj<i<, p; = 6 in Theorem 1
cannot be lessened, because we want (1+¢)1~% < (1+¢)~1/% in (2.8),
sol—EB < —1 thatis, p; > 6 for each z. (1 +¢)~/5 in the inequality
is from Proposition 1.

REMARK 2. The estimate [|u(-, )| < C(1+%)7/* is basically from

Proposition 1. Proposition 1 follows from Lemma 1-7. To find the best
estimate in the proof of Lemma 4(p.269), set § < %, then

flk-—ka|s6 eh«(MtdE  is majorized by 26. When 6§ > P,
| ko <o €= ®Vidk] < 2t + 44717 < 847, 0 = max{f,-1,~48}.
We minimize the estimate on the right hand side by choosing § = —%.
The same estimate holds for | |, kk:{_ P eth=(F)dk|. Therefore B = —1 can

not be decreased.

4. Example**

1

coshy satisfies

u(z,t) = v(z — kt), where v(y) = sechy =

2
cuy + auy + E ‘biupiuz + Uzpzzt =0

i=1
where ¢ £ 1, k = =, p; =2, p, = 4, by = —60k and b, = 120k. In
particular, u(z,t) = sech(z — t) is a solution of

2us + 3u, — 60u2uz + 1201‘4“3 + Uzzzzt = 0.

Clearly,
[le(-s oo = sup Ju(z,t)] =1 fort >0.
z€ER

Therefore, no decay estimate holds. This supports p* > 6 on Theo-
rem 1. ‘ ‘

We verify this. Now, let v(y) = sechy = ZB:_hi' By using the fact
that cosh? —sinh? = 1. sinh’ = cosh, cosh’ = sinh, so 1 — tanh? =

** This example is provided by Jerry Goldstein.
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sech?,

v' = (cosh™!)’ = —(cosh™?)sinh
v" = cosh™! —2 cosh™?
v"' = — cosh™? sinh +6 cosh ™ sinh

v"" = cosh™! —20 cosh ™2 +24 cosh°

2
cus + aug + Z bjuP uy + Uzzzye = 0 is equivalent to

=1

2
" —ckv' + av' + Z bgv-”"v’ — k"™ = 0.

=1

So (a—ck) cosh™ y+ 1!,—11"_‘_T(cosh_l y)""*'l—i—;’—zf’-f'_—l(cosh_1 P2+l _k(cosh™ y

—~20cosh™ y + 24 cosh™® y) = 0 gives

a—ck=k, p1=2, p2=4
— =-20k and %:241:.
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