POINTWISE DECAY ESTIMATES OF SOLUTIONS OF THE GENERALIZED ROSENAU EQUATION

MI AI PARK*

1. Introduction

Consider the following initial-value problem for the generalized Rosenau equation ([5], [6]):

(1.1)
$$u_t + u_x + F(u)_x + u_{xxxt} = 0, \quad x \in \mathbf{R}, \ t > 0$$
$$u(x,0) = \varphi(x), \qquad x \in \mathbf{R}.$$

Here $F(u) = \sum_{i=1}^{n} \frac{c_i}{p_i + 1} u^{p_i + 1}$ ($c_i \in \mathbb{R}, p_i > 0$ integers). It is of interest

to investigate the behavior of solutions of the initial value problem (1.1). It has been proved in ([5], Chapter I) that (1.1) possesses global solutions for initial data $\varphi \in H_0^4(\mathbf{R})$.

The purpose of this paper is to prove Theorem 1 below, which says that solutions with small initial data φ decay like $t^{-1/5}$ in the supremum norm (if each $p_i \geq 6$). This is an analogue of Albert's result ([2]) on the L^{∞} decay of solutions of the generalized Benjamin-Bona-Mahony equation.

2. Statement and proof of the main result

For $1 \le p < \infty$, the symbol L^p will denote the space of Lebesgue measurable functions $f: \mathbf{R} \to \mathbf{R}$ with the norm

$$||f||_{L^p} = (\int_{-\infty}^{\infty} |f(x)|^p dx)^{1/p};$$

while L^{∞} denotes the space of measurable functions such that $||f||_{L^{\infty}} = \text{esssup}_{x \in \mathbb{R}} |f(x)|$ is finite.

Received July 18, 1991.

^{*} Her current address is Dobong P.O.Box 64, Seoul 132-600, Korea.

262 Mi Ai Park

The Fourier transform is defined, for smooth functions f(x) with compact support, by

$$\widehat{f}(k) = \int_{-\infty}^{\infty} e^{ikx} f(x) dx, \quad k \in \mathbf{R}.$$

The definition is extended by continuity to the space of tempered distributions on \mathbf{R} , and the Sobolev space H^s $(s \in \mathbf{R})$ is defined to be the subspace of tempered distributions f such that $\widehat{f}(k)$ is a function and the norm $||f||_{H^s} = (\int_{-\infty}^{\infty} (1+|k|^2)^s |\widehat{f}(k)|^2 dk)^{1/2}$ is finite. (See [4], [8] or [9].)

THEOREM 1. Suppose $p^* = \min_{1 \le i \le n} p_i \ge 6$. Then there exists $\delta > 0$ such that if $\|\varphi\|_{L^1} + \|\varphi'\|_{L^1} + \|\varphi\|_{H^4} < \delta$, then the unique solution u(x,t) of (1.1) satisfies

$$|u(x,t)| \le C(1+t)^{-1/5}$$

for all t > 0 and $x \in \mathbf{R}$, where the constant C does not depend on x or t.

The proof of Theorem 1 uses the estimate stated in Proposition 1 below for solutions of the linearized problem

(2.1)
$$u_t + u_x + u_{xxxxt} = 0$$
$$u(x, 0) = \varphi(x).$$

This is the linearization of (1.1) about the solution $v \equiv 0$. Zero is a solution since F(0) = F'(0) = 0.

Using the Fourier transformation method, one finds that the solution of (2.1) is given by

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ih_{\alpha}(k)t} \widehat{\varphi}(k) dk,$$

where

(2.2)
$$\begin{cases} h_{\alpha}(k) = g(k) - \alpha k \\ g(k) = \frac{k}{1+k^4} \text{ and } \\ \alpha = \frac{x}{t}. \end{cases}$$

PROPOSITION 1. There exists a constant C > 0 such that

$$|\int_{-\infty}^{\infty} e^{ih_{\alpha}(k)t} \widehat{\varphi}(k) dk| \leq C(\|\varphi\|_{L^{1}} + \|\varphi\|_{H^{3}})(1+t)^{-1/5}$$

for all $\alpha \in \mathbf{R}$ and t > 0.

We first prove Theorem 1, assuming Proposition 1. Let $S_t\varphi(x)$ denote the solution u(x,t) of the linearized problem (2.1). Then solutions of the inhomogeneous equation

$$w_t + w_x + w_{xxxxt} = (G(x,t))_x$$

may easily be seen to satisfy the variation-of-parameters formula

$$w(x,t) = S_t(w(x,0)) + \int_0^t S_{(t-\zeta)}(\mathcal{K} * G(x,\zeta))d\zeta,$$

where $\mathcal{K}(x) = \frac{\pi i}{2} \left(e^{-\frac{\sqrt{2}}{2}|x| + \frac{\sqrt{2}}{2}ix} + e^{-\frac{\sqrt{2}}{2}|x| - \frac{\sqrt{2}}{2}ix}\right)$ and * denotes convolution with respect to the x variable.

Hence the solution of (1.1) satisfies the integral equation

(2.3)
$$u(x,t) = S_t \varphi - \int_0^t S_{(t-\tau)}(\mathcal{K} * F(u)) d\tau.$$

Moreover, differentiating (1.1) yields

$$(u_x)_t + (u_x)_x + (u_x)_{xxxxt} = -(F'(u)u_x)_x$$

and $v = u_x$ satisfies

(2.4)
$$v(x,t) = S_t(\varphi') - \int_0^t S_{(t-\tau)}(\mathcal{K} * F'(u)v) d\tau.$$

Now define

$$q(t) = \sup_{0 \le \tau \le t} \{ (\|u(\tau)\|_{L^{\infty}} + \|u_x(\tau)\|_{L^{\infty}})(1+\tau)^{1/5} + \|u\|_{H^3} \}.$$

264 Mi Ai Park

It will be shown that

$$(2.5) q(t) \le C(\|\varphi\|_{L^1} + \|\varphi'\|_{L^1} + \|\varphi\|_{H^4} + \sum_{i=1}^n q(t)^{p_i+1}).$$

We will make use of the two estimates

$$\|\mathcal{K} * \psi\|_{H^{s}} \leq C \|\psi\|_{H^{s}}.$$

Inequality (2.6) is a standard one. To show (2.7), we have, for all $s \in \mathbb{R}$,

$$\begin{split} \|\mathcal{K}*\psi\|_{H^{s}} &= (\int_{-\infty}^{\infty} (1+k^{2})^{s} (\widehat{\mathcal{K}*\psi})^{2} dk)^{1/2} \\ &= (\int_{-\infty}^{\infty} (1+k^{2})^{s} (\widehat{\mathcal{K}}\widehat{\psi})^{2} dk)^{1/2} \\ &= (\int_{-\infty}^{\infty} (1+k^{2})^{s} (\frac{ik}{k^{4}+1})^{2} (\widehat{\psi})^{2} dk)^{1/2} \\ &\leq (\int_{-\infty}^{\infty} (1+k^{2})^{s} (\frac{k}{k^{4}+1})^{2} |\widehat{\psi}|^{2} dk)^{1/2} \\ &\leq (\int_{-\infty}^{\infty} (1+k^{2})^{s} |\widehat{\psi}|^{2} dk)^{1/2} \\ &= \|\psi\|_{H^{s}}. \end{split}$$

Thus the proof of (2.7) is complete.

Now, from (2.6) and Proposition 1 one has

$$||v||_{L^{\infty}} \le C(||\varphi'||_{L^{1}} + ||\varphi'||_{H^{3}})(1+t)^{-1/5}$$

$$+ \int_{0}^{t} (||\mathcal{K} * (F'(u)v)(\tau)||_{L^{1}}$$

$$+ ||\mathcal{K} * (F'(u)v)(\tau)||_{H^{3}})(1+(t-\tau))^{-1/5}d\tau,$$

and

$$\|\mathcal{K}*(F'(u)v)(\tau)\|_{L^1} \leq C\|(F'(u)v)(\tau)\|_{L^1}$$

$$\leq C \| \sum_{i=1}^{n} u^{p_{i}-1}(\tau) \|_{L^{\infty}} \| u(\tau)v(\tau) \|_{L^{1}}$$

$$\leq C \sum_{i=1}^{n} \| u(\tau) \|_{L^{\infty}}^{p_{i}-1} \| u(\tau) \|_{L^{2}} \| v(\tau) \|_{L^{2}}$$

$$\leq C \sum_{i=1}^{n} q(t)^{p_{i}+1} (1+\tau)^{\frac{1-p_{i}}{5}}.$$

The last inequality is from the following estimates:

$$q(t) \geq (\|u(\tau)\|_{L^{\infty}} + \|u_{x}(\tau)\|_{L^{\infty}})(1+\tau)^{1/5} + \|u\|_{H^{3}}$$

$$\geq (\|u(\tau)\|_{L^{\infty}} + \|u_{x}(\tau)\|_{L^{\infty}})(1+\tau)^{1/5}$$

$$q(t)(1+\tau)^{-1/5} \geq \|u(\tau)\|_{L^{\infty}} + \|u_{x}(\tau)\|_{L^{\infty}}$$

$$\geq \|u(\tau)\|_{L^{\infty}},$$

so
$$\|u(\tau)\|_{L^{\infty}}^{p_i-1} \le q(t)^{p_i-1} (1+\tau)^{\frac{1-p_i}{5}}$$
 and
$$2\|u(\tau)\|_{L^2}\|v(\tau)\|_{L^2} \le \|u(\tau)\|_{L^2}^2 + \|v(\tau)\|_{L^2}^2 = \|u(\tau)\|_{L^2}^2 + \|u_x(\tau)\|_{L^2}^2$$
$$\le \|u(\tau)\|_{H^3}^2 \le q(t)^2.$$

Also,

$$\begin{split} \|\mathcal{K}*(F'(u)v)\|_{H^{3}} &\leq C\|\sum_{i=1}^{n}u^{p_{i}}(\tau)v(\tau)\|_{H^{3}} = C\sum_{i=1}^{n}\|u^{p_{i}}(\tau)u_{x}(\tau)\|_{H^{3}} \\ &\leq C\sum_{i=1}^{n}\{\|u^{p_{i}-3}(\tau)(u_{x}(\tau))^{4}\|_{L^{2}} \\ &+\|u^{p_{i}-2}(\tau)(u_{x}(\tau))^{2}u_{xx}(\tau)\|_{L^{2}} \\ &+\|u^{p_{i}-1}(\tau)(u_{xx}(\tau))^{2}\|_{L^{2}} \\ &+\|u^{p_{i}-1}(\tau)u_{x}(\tau)u_{xxx}(\tau)\|_{L^{2}} \\ &+\|u^{p_{i}}(\tau)u_{xxxx}(\tau)\|_{L^{2}} +\|u^{p_{i}}(\tau)u_{x}(\tau)\|_{L^{2}}\} \\ &\leq C\sum_{i=1}^{n}\{\|u(\tau)\|_{L^{\infty}}^{p_{i}-3}\|u_{x}(\tau)\|_{L^{\infty}}^{3}\|u_{x}(\tau)\|L^{2} \end{split}$$

$$+ \|u(\tau)\|_{L^{\infty}}^{p_{i}-2} \|u_{x}(\tau)\|_{L^{\infty}}^{2} \|u_{xx}(\tau)\|_{L^{2}}$$

$$+ \|u(\tau)\|_{L^{\infty}}^{p_{i}-1} \|u_{xx}(\tau)\|_{L^{\infty}} \|u_{xx}(\tau)\|_{L^{2}}$$

$$+ \|u(\tau)\|_{L^{\infty}}^{p_{i}-1} \|u_{x}(\tau)\|_{L^{\infty}} \|u_{xxx}(\tau)\|_{L^{2}}$$

$$+ \|u(\tau)\|_{L^{\infty}}^{p_{i}} \|u_{xxxx}(\tau)\|_{L^{2}} + \|u(\tau)\|_{L^{\infty}}^{p_{i}} \|u_{r}(\tau)\|_{L^{2}}$$

$$\leq C \sum_{i=1}^{n} (q(t))^{p_{i}+1} (1+\tau)^{\frac{1-p_{i}}{5}}.$$

Consequently,

$$\int_0^t (1+\tau)^{\frac{1-p_i}{5}} (1+(t-\tau))^{-\frac{1}{5}} d\tau \le C(1+t)^{-\frac{1}{5}}$$

for $p^* = \min_{1 \le i \le n} p_i \ge 6$, since (letting $*_t$ denote convolution on [0, t])

$$\int_0^t (1+\tau)^{\frac{1-p_i}{5}} (1+(t-\tau))^{-\frac{1}{5}} d\tau = ((1+\tau)^{-\frac{1}{5}}) *_t ((1+\tau)^{\frac{1-p_i}{5}})$$

and

It follows that

$$(2.9) (1+t)^{\frac{1}{6}} ||v||_{L^{\infty}} \le C\{||\varphi'||_{L^{1}} + ||\varphi||_{H^{4}} + \sum_{i=1}^{n} q(t)^{p_{i}+1}\}$$

Next, from (2.3) one has

$$||u||_{L^{\infty}} \le C(||\varphi||_{L^{1}} + ||\varphi||_{H^{3}})(1+t)^{-\frac{1}{5}}$$

$$+ \int_0^t (\|(\mathcal{K} * F(u))(\tau)\|_{L^1} \\ + \|(\mathcal{K} * F(u))(\tau)\|_{H^3})(1 + (t - \tau))^{-\frac{1}{5}} d\tau.$$

But

$$\begin{split} \|(\mathcal{K}*F(u))(\tau)\|_{L^{1}} &\leq C \|F(u)(\tau)\|_{L^{1}} \\ &\leq C \sum_{i=1}^{n} \|u(\tau)\|_{L^{\infty}}^{p_{i}-1} \|u(\tau)\|_{L^{2}}^{2} \\ &\leq C \sum_{i=1}^{n} (q(t))^{p_{i}+1} (1+\tau)^{\frac{1-p_{i}}{5}} \end{split}$$

and

$$\begin{split} \|(\mathcal{K}*F(u))(\tau)\|_{H^{3}} &\leq C \sum_{i=1}^{n} \|u^{p_{i}+1}(\tau)\|_{H^{3}} \\ &\leq C \sum_{i=1}^{n} \{\|u^{p_{i}-2}(\tau)(u_{x})^{3}(\tau)\|_{L^{2}} \\ &+ \|u^{p_{i}-1}(\tau)u_{x}(\tau)u_{xx}(\tau)\|_{L^{2}} \\ &+ \|u^{p_{i}}(\tau)u_{xxx}(\tau)\|_{L^{2}} + \|u^{p_{i}+1}(\tau)\|_{L^{2}} \} \\ &\leq C \sum_{i=1}^{n} \{\|u(\tau)\|_{L^{\infty}}^{p_{i}-2} \|u_{x}(\tau)\|_{L^{\infty}}^{2} \|u_{x}(\tau)\|_{L^{2}} \\ &+ \|u(\tau)\|_{L^{\infty}}^{p_{i}-1} \|u_{x}(\tau)\|_{L^{\infty}} \|u_{xx}(\tau)\|_{L^{2}} \\ &+ \|u\|_{L^{\infty}}^{p_{i}} \|u_{xxx}\|_{L^{2}} + \|u\|_{L^{\infty}}^{p_{i}} \|u\|_{L^{2}} \} \\ &\leq C \sum_{i=1}^{n} (q(t))^{p_{i}+1} (1+\tau)^{\frac{1-p_{i}}{8}}. \end{split}$$

Again, for $p^* \geq 6$ it follows that

$$(2.10) (1+t)^{\frac{1}{6}} ||u||_{L^{\infty}} \le C\{||\varphi||_{L^{1}} + ||\varphi||_{H^{3}} + \sum_{i=1}^{n} (q(t))^{p_{i}+1}\}.$$

Finally, from (2.3) one has

$$\begin{aligned} \|u\|_{H^3} &\leq \|S_t \varphi\|_{H^3} + \int_0^t \|S_{(t-\tau)}(\mathcal{K} * F(u))\|_{H^3} d\tau \\ &\leq C(\|\varphi\|_{H^3} + \int_0^t \|\mathcal{K} * F(u)\|_{H^3} d\tau) \\ &\leq C(\|\varphi\|_{H^3} + \int_0^t \|F(u)\|_{H^3} d\tau) \\ &\leq C(\|\varphi\|_{H^3} + (\sum_{i=1}^n (q(t))^{p_i+1} \int_0^t (1+\tau)^{\frac{1-p_i}{5}} d\tau) \\ &\leq C(\|\varphi\|_{H^4} + \sum_{i=1}^n (q(t))^{p_i+1}). \end{aligned}$$

Adding (2.9), (2.10) and (2.11) gives (2.5).

Choose a number $\eta > 0$ such that $\eta > C \sum_{i=1}^{n} \eta^{p_i+1}$, where C is the same constant appearing in (2.5). Choose $\delta > 0$ such that if $(\|\varphi\|_{L^1} + \|\varphi'\|_{L^1} + \|\varphi\|_{H^4}) < \delta$ then $q(0) < \eta$ and

(2.12)
$$\eta > C\{\|\varphi\|_{L^1} + \|\varphi'\|_{L^1} + \|\varphi\|_{H^4} + \sum_{i=1}^n \eta^{p_i+1}\}$$

Then $\|\varphi\|_{L^1} + \|\varphi'\|_{L^1} + \|\varphi\|_{H^4} < \delta$ must imply $q(t) < \eta$ for all $t \ge 0$. For otherwise, by the continuity of q(t), we would have $q(t) = \eta$ for some t, and (2.12) would contradict (2.5).

3. Estimate for the linearized equation

We need Lemmas 1-7 to prove Proposition 1.

The following four lemmas hold under the stated hypotheses. That is, in Lemmas 1-4, g can be any function and $h_{\alpha}(k) = g(k) - \alpha k$, subject to the stated hypotheses. Beginning with Lemma 5 the particular choice of g given by (2.2) will be used. See [2] for proofs of Lemmas 1-3.

LEMMA 1. Suppose $h'_{\alpha}(k)$ and $h''_{\alpha}(k)$ do not vanish for $a \leq k \leq b$. Then

$$|\int_a^b e^{ith_\alpha(k)}dk| \leq \frac{2}{t} \left[\frac{1}{|h'_\alpha(a)|} + \frac{1}{|h'_\alpha(b)|} \right]$$

for all $\alpha \in \mathbf{R}$ and $t \geq 1$.

LEMMA 2. Suppose $g''(k) \neq 0$ for $k_1 \leq k \leq k_2$. Then there exists a constant C > 0 such that

$$|\int_{k_1}^{k_2} e^{ith_\alpha(k)} dk| \le Ct^{-1/2}$$

for all $\alpha \in \mathbf{R}$, $t \geq 1$.

LEMMA 3. Suppose $g''(k_1) = 0$, $g'''(k_1) \neq 0$ and $g''(k) \neq 0$ for $k_1 < k \leq k_2$. Then there exists a constant C > 0 such that

$$|\int_{k_1}^{k_2} e^{ih_{\alpha}(k)t} dk| \le Ct^{-1/3}$$

for all $\alpha \in \mathbf{R}$, $t \ge 1$. The same result holds if $g''(k_2) = 0$, $g'''(k_2) \ne 0$ and $g''(k) \ne 0$ for $k_1 \le k < k_2$.

LEMMA 4. Suppose $g''(k_1) = g'''(k_1) = g^{(iv)}(k_1) = 0$, $g^{(v)}(k_1) \neq 0$ and $g''(k) \neq 0$ for $k_1 < k \leq k_2$. Then there exists a constant C > 0 such that

$$\left| \int_{k_{\star}}^{k_2} e^{ih_{\alpha}(k)t} dk \right| \le Ct^{-1/5}$$

for all $\alpha \in \mathbb{R}$, $t \ge 1$. The same result holds if $g''(k_2) = g'''(k_2) = g^{(iv)}(k_2) = 0$, $g^{(v)}(k_2) \ne 0$ and $g''(k) \ne 0$ for $k_1 \le k < k_2$.

Proof. We may assume that g''(k) > 0 on $(k_1, k_2]$ and that $g^{(v)}(k_1) \neq 0$. The other cases are similar. Define $\alpha_i = g'(k_i)$ for i = 1, 2; and for any $\alpha \in \mathbf{R}$, define $k_{\alpha} \in [k_1, k_2]$ by

$$k_{\alpha} = k_1,$$
 if $\alpha \le k_1$ $h'_{\alpha}(k_{\alpha}) = 0$ if $\alpha_1 \le \alpha \le a_2$ $k_{\alpha} = k_2$ if $\alpha \ge \alpha_2.$

If $\alpha \in [\alpha_1, \alpha_2]$, then $h'_{\alpha}(k_{\alpha}) = 0$, and the Taylor expansion of $h'_{\alpha}(k)$ about $k = k_{\alpha}$ is

(3.1)
$$h'_{\alpha}(k) = g''(k_{\alpha})(k - k_{\alpha}) + \frac{g'''(k_{\alpha})}{2}(k - k_{\alpha})^{2} + \frac{g^{(iv)}(k_{\alpha})}{6}(k - k_{\alpha})^{3} + \frac{g^{(v)}(k_{\alpha})}{24}(k - k_{\alpha})^{4} + O((k - k_{\alpha})^{5}).$$

Now expand $g''(k_{\alpha}), g'''(k_{\alpha}), g^{(iv)}(k_{\alpha})$ and $g^{(v)}(k_{\alpha})$ about $k_{\alpha} = k_1$ to obtain

(3.2)
$$g''(k_{\alpha}) = \frac{g^{(v)}(k_1)}{6}(k_{\alpha} - k_1)^3 + O((k_{\alpha} - k_1)^4)$$

(3.3)
$$g'''(k_{\alpha}) = \frac{g^{(v)}(k_1)}{6}(k_{\alpha} - k_1)^2 + O((k_{\alpha} - k_1)^3)$$

(3.4)
$$g^{(iv)}(k_{\alpha}) = g^{(v)}(k_1)(k_{\alpha} - k_1) + O((k_{\alpha} - k_1)^2)$$

(3.5)
$$g^{(v)}(k_{\alpha}) = g^{(v)}(k_1) + O(k_{\alpha} - k_1)$$

and substitute (3.2)-(3.5) into (3.1). The result is

(3.6)
$$h'_{\alpha}(k) = \frac{g^{(v)}(k_1)}{6} (k_{\alpha} - k_1)^3 (k - k_{\alpha}) + \frac{g^{(v)}(k_1)}{4} (k_{\alpha} - k_1)^2 (k - k_{\alpha})^2 + \frac{g^{(v)}(k_1)}{6} (k_{\alpha} - k_1) (k - k_{\alpha})^3 + \frac{g^{(v)}(k_1)}{24} (k - k_{\alpha})^4 + \mathcal{R}$$

where \mathcal{R} is of fifth order in $(k_{\alpha}-k_1)$ and $(k-k_{\alpha})$. Since $(k_{\alpha}-k_1) \to 0$ and $(k-k_{\alpha}) \to 0$ as $\alpha \to \alpha_1$ and $k \to k_1$, it follows from (3.6) that there exist $\alpha_3 > \alpha_1$ and $k_3 = k_{\alpha_3} > k_1$ such that for all $\alpha \in [\alpha_1, \alpha_3]$ and $k \in [k_1, k_3]$,

$$|h'_{\alpha}(k)| \ge C(|k_{\alpha} - k_{1}|^{3}|k - k_{\alpha}| + |k_{\alpha} - k_{1}|^{2}|k - k_{\alpha}|^{2})$$

$$\text{if } |k - k_{\alpha}| \le |k_{\alpha} - k_{1}|$$

$$(3.8)$$

$$|h'_{\alpha}(k)| \ge C(|k_{\alpha} - k_{1}||k - k_{\alpha}|^{3} + |k - k_{\alpha}|^{4})$$

if $|k-k_{\alpha}| \geq |k_{\alpha}-k_1|$

where C is independent of α . Moreover (3.7) and (3.8) also hold for $\alpha \in [\alpha_1 - \eta, \alpha_3 + \eta]$ for some $\eta > 0$, since $|h'_{\alpha}(k)| \geq \frac{1}{2}|h'_{\alpha_1}(k)|$ for

 $\alpha \in [\alpha_1 - \eta, \alpha_1]$ and $|h'_{\alpha}(k)| \ge \frac{1}{2} |h'_{\alpha_3}(k)|$ for $\alpha \in [\alpha_3, \alpha_3 + \eta]$ for suitable $\eta > 0$.

By assumption, $g''(k) \neq 0$ on $[k_3, k_2]$ and so the desired estimate for $\int_{k_3}^{k_2} e^{ih_\alpha(k)t} dk$ follows from Lemma 2. Furthermore, if $\alpha \notin [\alpha_1 - \eta, \alpha_3 + \eta]$, then $|h'_\alpha(k)| \geq C$ for all $k \in [k_1, k_3]$, and hence the desired estimate for $\int_{k_1}^{k_3} e^{ih_\alpha(k)t} dk$ follows from Lemma 1. Therefore, it is enough to estimate $\int_{k_1}^{k_3} e^{ih_\alpha(k)t} dk$ when $\alpha \in [\alpha_1 - \eta, \alpha_3 + \eta]$, and we may assume henceforth that (3.7) and (3.8) are valid.

Define $\delta = |k_{\alpha} - k_1|$, and consider first $\int_{|k-k_{\alpha}| \leq \delta} e^{ik_{\alpha}(k)t} dk$. If $\delta \leq t^{-1/5}$, then this integral is majorized by $2t^{-1/5}$. If, on the other hand, $\delta \geq t^{-1/5}$, write

$$\begin{split} |\int_{|k-k_{\alpha}| \leq \delta} e^{ih\alpha(k)t} dk| &\leq |\int_{|k-k_{\alpha}| \leq t^{-1/5}} e^{ih_{\alpha}(k)t} dk| \\ &+ |\int_{t^{-1/5} \leq |k-k_{\alpha}| \leq \delta} e^{ih_{\alpha}(k)t} dk|. \end{split}$$

The first integral on the right-hand side is again majorized by $2t^{-1/5}$, while for the second integral, (3.7) and Lemma 1 yield

$$|\int_{t^{-1/5} \le |k-k_{\alpha}| \le \delta} e^{ih_{\alpha}(k)t} dk| \le \frac{2}{t} \left[\frac{2}{C(\delta^{3} t^{-1/5} + \delta^{2} t^{-2/5})} \right] < C t^{-1/5}.$$

It remains to consider

$$\int_{\substack{k \in [k_1, k_3] \\ |k - k_\alpha| \ge \delta}} e^{ih_\alpha(k)t} dk = \int_{k_\alpha + \delta}^{k_3} e^{ih_\alpha(k)t} dk.$$

Again, look separately at the cases $\delta \geq t^{-1/5}$ and $\delta \leq t^{-1/5}$. In the first case, (3.8) and Lemma 1 imply that

$$\left| \int_{k_2+\delta}^{k_3} e^{ih_{\alpha}(k)t} dk \right| \le \frac{2}{t} \left[\frac{2}{C\delta^4} \right]$$

$$\le Ct^{-1/5}.$$

In the second case, write

$$\begin{split} |\int_{k_{\alpha}+\delta}^{k_{3}} e^{ih_{\alpha}(k)t} dk| &\leq |\int_{k_{\alpha}+\delta}^{k_{\alpha}+t^{-1/5}} e^{ih_{\alpha}(k)t} dk| \\ &+ |\int_{k_{\alpha}+t^{-1/5}}^{k_{3}} e^{ih_{\alpha}(k)t} dk|. \end{split}$$

Then the first integral on the right-hand side is majorized by $t^{-1/5}$, while the desired estimate for the second integral is again obtained from (3.7) and Lemma 1. Thus the proof of Lemma 4 is complete.

Now we assume specifically that h_{α} is given by (2.2).

LEMMA 5. There exists a constant C > 0 such that

$$|\int_{2 \le |k| \le t^{1/10}} e^{ih_{\alpha}(k)t} dk| \le Ct^{-1/4}$$

for all $\alpha \in \mathbf{R}$ and $t \geq 0$.

Proof. By symmetry, it is enough to prove the result for $\int_{2}^{t^{1/10}} e^{ih_{\alpha}(k)t} dk$. For $\alpha < 0$, define $k_{\alpha} \in [2, \infty)$ by

$$k_{\alpha} = 2$$
 if $\alpha \le g'(2)$
 $h'_{\alpha}(k_{\alpha}) = 0$ if $g'(2) < \alpha < 0$.

Note first of all that

$$\lim_{k\to\infty}k^4|g'(k)|=3,\quad \lim_{k\to\infty}k^5|g''(k)|=12\quad \text{and}$$

$$\lim_{k\to\infty}k^6|g'''(k)|=60.$$

In particular, there exists C > 0 such that for all $k \in [2, \infty)$,

$$|g'(k)| \le \frac{C}{k^4}, \ |g''(k)| \le \frac{C}{k^5} \quad \text{and} \quad |g'''(k)| \le \frac{C}{k^6}.$$

Next, let r be any number such that 0 < r < 1 and $(1-r)^4 > \frac{5}{6}$; and choose ρ so that $0 < \rho < 1$ and $\frac{1-\rho}{1+\rho} > \max[(1-r)^4, \frac{5}{6(1-r)^4}]$. Then there exists M > 0 such that if $k \ge M$, then

(3.9)
$$3(1-\rho) \le k^4 |g'(k)| \le 3(1+\rho)$$
$$12(1-\rho) \le k^5 |g''(k)| \le 12(1+\rho)$$
$$60(1-\rho) < k^6 |g'''(k)| \le 60(1+\rho)$$

By the way how k_{α} is defined, $h'_{\alpha}(k_{\alpha})=0$ for $g'(2)<\alpha<0$. So $\frac{1-3k_{\alpha}^4}{(1+k_{\alpha}^4)^2}-\alpha=0$ and

$$k_{\alpha}^{4} = \frac{-(2\alpha+3) \pm \sqrt{(2\alpha+3)^{2} - 4\alpha(\alpha-1)}}{2\alpha}.$$

Since $k_{\alpha} \geq 2$,

$$k_{\alpha} = \sqrt[4]{rac{-(2\alpha+3)-\sqrt{16\alpha-9}}{2\alpha}}$$
 and $\lim_{\alpha \to 0^{-}} k_{\alpha} = \infty$.

Finally, $\eta > 0$ can be chosen so small that if $\alpha \in [-\eta, 0)$, then $k_{\alpha} > \frac{M}{1-r}$. Then the following estimates hold:

$$(3.10) |h'_{\alpha}(k)| \ge \frac{C}{k_{\alpha}^5} |k - k_{\alpha}| \text{if} |k - k_{\alpha}| \le rk_{\alpha}$$

$$|h'_{\alpha}(k)| \ge \frac{C}{k^4} \quad \text{if} \quad |k - k_{\alpha}| \ge rk_{\alpha}$$

where C > 0 is independent of α .

To prove (3.10), assume $|k-k_{\alpha}| < rk_{\alpha}$ and write $h'_{\alpha}(k) = g''(k_{\alpha})(k-k_{\alpha}) + \frac{g'''(z)}{2}(k-k_{\alpha})^2$ where $|z-k_{\alpha}| \le |k-k_{\alpha}| \le rk_{\alpha}$. From (3.9) it follows that

$$\begin{split} |h_{\alpha}'(k)| &\geq |g''(k_{\alpha})| \, |k - k_{\alpha}| - \frac{|g'''(z)|}{2} (k - k_{\alpha})^{2} \\ &\geq \frac{12(1-\rho)}{k_{\alpha}^{5}} |k - k_{\alpha}| - \frac{60(1+\rho)}{2z^{6}} (k - k_{\alpha})^{2} \\ &\geq \frac{|k - k_{\alpha}|}{k_{\alpha}^{5}} \{12(1-\rho) - \frac{30(1+\rho)}{(1-r)^{6}k_{\alpha}} |k - k_{\alpha}|\} \\ &\geq \frac{|k - k_{\alpha}|}{k_{\alpha}^{5}} \{12(1-\rho) - \frac{10(1+\rho)}{(1-r)^{4}} \cdot \frac{3r}{(1-r)^{2}}\} \\ &\geq \frac{|k - k_{\alpha}|}{k_{\alpha}^{5}} \{12(1-\rho) - \frac{10(1+\rho)}{(1-r)^{4}}\}, \end{split}$$

since r satisfies $(1-r)^4 > \frac{5}{6}$, so $\frac{3r}{(1-r)^2} \le 1$, and the constant in brackets is positive.

For (3.11), consider separately the cases $2 \le k \le M$, $M \le k \le k_{\alpha}(1-r)$ and $k_{\alpha}(1-r) \le k$. Since $h'_{\alpha}(k) = \frac{1-3k^4}{(1+k^4)^2} - \alpha$ is bounded away from zero when $k \in [2, M]$ and $\alpha \in [-\eta, 0)$, (3.11) is obvious in the first case. In case $M \le k \le k_{\alpha}(1-r)$, it follows from (3.9) and the definition of ρ that

$$\begin{aligned} |h'_{\alpha}(k)| &= |h'_{\alpha}(k) - h'_{\alpha}(k_{\alpha})| \ge |g'(k)| - |g'(k_{\alpha})| \\ &\ge \frac{3(1-\rho)}{k^4} - \frac{3(1+\rho)}{k^4_{\alpha}} \\ &\ge \frac{3(1-\rho)}{k^4} - \frac{3(1+\rho)(1-r)^4}{k^4} \\ &\ge \frac{3((1-\rho) - (1+\rho)(1-r)^4)}{k^4} \\ &\ge \frac{C}{k^4}. \end{aligned}$$

Finally, if $k_{\alpha}(1+r) \leq k$, we have, for some z in $[k_{\alpha}, k_{\alpha}(1+r)]$,

$$|h'_{\alpha}(k)| \ge |h'_{\alpha}(k_{\alpha}(1+r))| = |h'_{\alpha}(k_{\alpha}(1+r)) - h'_{a}(k_{\alpha})|$$
$$= |g''(z)|rk_{\alpha} \ge (\frac{C}{z^{5}})rk_{\alpha} \ge \frac{C}{z^{5}}rz \ge \frac{C}{k^{4}}.$$

To estimate $\int_2^{t^{1/10}} e^{ih_{\alpha}(k)t} dk$, first consider the case $t^{1/10} \leq k_{\alpha}(1-r)$. Then from (3.11) and Lemma 1, it follows that

$$\begin{split} |\int_{2}^{t^{1/10}} e^{ih_{\alpha}(k)t} dk| &\leq \frac{2}{t} \left[\frac{1}{|h'_{\alpha}(2)|} + \frac{1}{|h'_{\alpha}(t^{1/10})|} \right] \\ &\leq \frac{2}{t} [C + Ct^{2/5}] \\ &\leq C(t^{-1} + t^{-3/5}) \\ &< Ct^{-3/5}. \end{split}$$

Therefore, it suffices to consider the case

$$(3.12) t^{1/10} \ge k_{\alpha}(1-r).$$

We write the integral to be estimated as

(3.13)

$$\int_{2}^{t^{1/10}} e^{ih_{\alpha}(k)t} dk
= \int_{\substack{2 \le k \le t^{1/10} \\ |k-k_{\alpha}| \le rk_{\alpha}}} e^{ih_{\alpha}(k)t} dk + \int_{\substack{2 \le k \le t^{1/10} \\ |k-k_{\alpha}| \ge rk_{\alpha}}} e^{ih_{\alpha}(k)t} dk.$$

Again, using (3.11) and Lemma 1, the second integral on the right-hand side of (3.13) is dominated by

$$\frac{2}{t}[C+Ct^{2/5}] \le Ct^{-3/5}.$$

Now, let $\lambda = (\frac{k_0^5}{t})^{1/2}$ and write the first integral on the right-hand side of (3.13) as

(3.14)
$$\int_{|k-k_{\alpha}| \leq \lambda} e^{ih_{\alpha}(k)t} dk + \int_{\lambda \leq |k-k_{\alpha}| \leq rk_{\alpha}} e^{ih_{\alpha}(k)t} dk.$$

The first integral in (3.14) is dominated by 2λ , whereas for the second integral, (3.10) and Lemma 1 give

$$\begin{split} |\int_{\lambda \leq |k-k_{\alpha}| \leq rk_{\alpha}} e^{ih_{\alpha}(k)t} dk| &\leq \frac{C}{t} \left[\frac{1}{\lambda/k_{\alpha}^{5}} \right] = \frac{C}{t} \frac{(k_{\alpha})^{5}}{(k_{\alpha}^{5}/t)^{1/2}} \\ &= C(k_{\alpha}^{5}/t)^{1/2} = C\lambda. \end{split}$$

Therefore, it is seen that (3.14) is dominated by $C\lambda$. However, from (3.12), we have

$$\lambda = \left(\frac{k_{\alpha}^{5}}{t}\right)^{1/2} \le C \left(\frac{(t^{1/10})^{5}}{t}\right)^{1/2} \le Ct^{-1/4}.$$

Thus, it shown that

$$|\int_{2}^{t^{1/10}} e^{ih_{\alpha}(k)t} dk| \leq Ct^{-1/4}$$

and the proof of Lemma 5 is complete.

276 Mi Ai Park

LEMMA 6. There exists a constant C>0 such that $|\int_{|k|\leq t^{1/10}}e^{ih_{\alpha}(k)t}dk|\leq Ct^{-1/5}$ for any $\alpha\in\mathbf{R},\ t\geq 1$.

Proof. Since $g''(\pm \sqrt[4]{\frac{5}{3}}) = 0$, $g'''(\pm \sqrt[4]{\frac{5}{3}}) \neq 0$ and $g''(k) \neq 0$ for $-2 \leq k < -\sqrt[4]{\frac{5}{3}}, -\sqrt[4]{\frac{5}{3}} < k \leq -1, 1 \leq k < \sqrt[4]{\frac{5}{3}}$ and $\sqrt[4]{\frac{5}{3}} < k \leq 2$, we apply Lemma 3 to the integral of $e^{ih_a(k)t}$ over the intervals $[-2, -\sqrt[4]{\frac{5}{3}}]$, $[-\sqrt[4]{\frac{5}{3}}, -1]$, $[1, \sqrt[4]{\frac{5}{3}}]$ and $[\sqrt[4]{\frac{5}{3}}, 2]$ and since $g''(0) = g'''(0) = g^{(iv)}(0) = 0$, $g^{(v)}(0) \neq 0$ and $g''(k) \neq 0$ for $-1 \leq k < 0$ and $0 < k \leq 1$, apply Lemma 4 to the integral of $e^{ih_a(k)t}$ over the intervals [-1, 0] and [0, 1] and apply Lemma 5 on the intervals $[-t^{1/10}, -2]$ and $[2, t^{1/10}]$.

LEMMA 7. There exists a constant C > 0 such that

$$|\int_{|k| < t^{1/10}} e^{ih_\alpha(k)t} \widehat{\varphi}(k) dk| \le C \|\varphi\|_{H^3} t^{-1/5}$$

for all $\varphi \in H^3$, $\alpha \in \mathbf{R}$ and $t \ge 1$.

Proof. For k > 0, we have

$$\begin{split} &|\int_{t^{1/10}}^{\infty}e^{ih_{\alpha}(k)t}\widehat{\varphi}(k)dk|\\ &\leq \int_{t^{1/10}}^{\infty}|\widehat{\varphi}(k)|dk\\ &\leq (\int_{t^{1/10}}^{\infty}k^{6}|\widehat{\varphi}(k)|^{2}dk)^{1/2}(\int_{t^{1/10}}^{\infty}k^{-6}dk)^{1/2}\\ &\leq (\int_{t^{1/10}}^{\infty}(1+k^{2})^{3}|\widehat{\varphi}(k)|^{2}dk)^{1/2}([-\frac{1}{5}k^{-5}]_{t^{1/10}}^{\infty})^{1/2}\\ &\leq C\|\varphi\|_{H^{3}}t^{-1/5}. \end{split}$$

Now we prove Proposition 1.

Proof of Proposition 1. For $0 < t \le 1$, we have

$$|\int_{-\infty}^{\infty} e^{ih_{\alpha}(k)t} \widehat{\varphi}(k) dk|$$

$$\leq \int_{-\infty}^{\infty} |\widehat{\varphi}(k)| dk$$

$$\leq (\int_{-\infty}^{\infty} (1+|k|^2)^2 |\widehat{\varphi}(k)|^2 dk)^{1/2} (\int_{-\infty}^{\infty} \frac{1}{(1+|k|^2)^2} dk)^{1/2}$$

$$\leq C \|\varphi\|_{H^2} \leq C(\|\varphi\|_{L^1} + \|\varphi\|_{H^2}).$$

It suffices to consider the case t > 1.

Let
$$q(k,t) = e^{i(\frac{k}{k^4+1})t} \chi_{\{|k| < t^{1/10}\}}$$
. Then

$$\begin{split} |\int_{-\infty}^{\infty} e^{ih_{\alpha}(k)t} \widehat{\varphi}(k) dk| &= |\int_{-\infty}^{\infty} e^{i(\frac{k}{1+k^4} - \frac{x}{t}k)t} \widehat{\varphi}(k) dk| \\ &= |\int_{-\infty}^{\infty} e^{-ikx} q(k,t) \widehat{\varphi}(k) dk| \\ &+ \int_{|k| \ge t^{1/10}} e^{ih_{\alpha}(k)t} \widehat{\varphi}(k) dk| \\ &\le |\int_{-\infty}^{\infty} e^{-ikx} (\check{q}(x,t) * \varphi(x))^{\wedge} dk| \\ &+ C \|\varphi\|_{H^3} t^{-1/5} \quad \text{by Lemma 7,} \\ &\le \frac{1}{2\pi} \|\check{q}(x,t) * \varphi(x)\|_{L^{\infty}} + C \|\varphi\|_{H^3} t^{-1/5}. \end{split}$$

However, Lemma 6 asserts that

$$\|\check{q}(x,t)\|_{L^{\infty}} = |\int_{-\infty}^{\infty} e^{-ikx} e^{i(\frac{k}{k^4+1})t} dk| \le Ct^{-1/5}.$$

Therefore,

$$\|\check{q}(x,t) * \varphi(x)\|_{L^{\infty}} \leq \|\check{q}(x,t)\|_{L^{\infty}} \|\varphi\|_{L^{1}} \leq C \|\varphi\|_{L^{1}} t^{-1/5}.$$

Thus it is proved that

$$\left|\int_{-\infty}^{\infty} e^{ih_{\alpha}(k)t} \widehat{\varphi}(k) dk\right| \leq C(\|\varphi\|_{L^{1}} + \|\varphi\|_{H^{3}}) t^{-1/5}.$$

Since $t \ge 1$, one has $t^{-1/5} \le C(1+t)^{-1/5}$ for C > 2 and the proof of Proposition 1 is complete.

REMARK 1. The assumption that $\min_{1 \le i \le n} p_i \ge 6$ in Theorem 1 cannot be lessened, because we want $(1+t)^{1-\frac{p_i}{5}} \le (1+t)^{-1/5}$ in (2.8), so $1-\frac{p_i}{5} \le -\frac{1}{5}$, that is, $p_i \ge 6$ for each i. $(1+t)^{-1/5}$ in the inequality is from Proposition 1.

REMARK 2. The estimate $||u(\cdot,t)|| \leq C(1+t)^{-1/5}$ is basically from Proposition 1. Proposition 1 follows from Lemma 1-7. To find the best estimate in the proof of Lemma 4(p.269), set $\delta \leq t^{\beta}$, then $\int_{|k-k_{\alpha}| \leq \delta} e^{ih_{\alpha}(k)t} dk$ is majorized by 2δ . When $\delta \geq t^{\beta}$, $|\int_{|k-k_{\alpha}| \leq \delta} e^{ih_{\alpha}(k)t} dk| \leq 2t^{\beta} + 4t^{-1-4\beta} \leq 8t^{\sigma}$, $\sigma = \max\{\beta, -1, -4\beta\}$. We minimize the estimate on the right hand side by choosing $\beta = -\frac{1}{5}$. The same estimate holds for $|\int_{k_2+\delta}^{k_3} e^{ih_{\alpha}(k)t} dk|$. Therefore $\beta = -\frac{1}{5}$ can not be decreased.

4. Example**

u(x,t) = v(x-kt), where $v(y) = \operatorname{sech} y = \frac{1}{\cosh y}$ satisfies

$$cu_t + au_x + \sum_{i=1}^{2} b_i u^{p_i} u_x + u_{xxxxt} = 0$$

where $c \neq -1$, $k = \frac{a}{c+1}$, $p_1 = 2$, $p_2 = 4$, $b_1 = -60k$ and $b_2 = 120k$. In particular, $u(x,t) = \operatorname{sech}(x-t)$ is a solution of

$$2u_t + 3u_x - 60u^2u_x + 120u^4u_x + u_{xxxxt} = 0.$$

Clearly,

$$||u(\cdot,t)||_{\infty} = \sup_{x \in \mathbb{R}} |u(x,t)| = 1$$
 for $t \ge 0$.

Therefore, no decay estimate holds. This supports $p^* \geq 6$ on Theorem 1.

We verify this. Now, let $v(y) = \operatorname{sech} y = \frac{1}{\cosh y}$. By using the fact that $\cosh^2 - \sinh^2 = 1$. $\sinh' = \cosh$, $\cosh' = \sinh$, so $1 - \tanh^2 = 1$

^{**} This example is provided by Jerry Goldstein.

sech²,

$$v' = (\cosh^{-1})' = -(\cosh^{-2})\sinh$$

$$v'' = \cosh^{-1} - 2\cosh^{-3}$$

$$v''' = -\cosh^{-2}\sinh + 6\cosh^{-4}\sinh$$

$$v'''' = \cosh^{-1} - 20\cosh^{-3} + 24\cosh^{-5}$$

$$cu_t + au_x + \sum_{i=1}^{2} b_i u^{p_i} u_x + u_{xxxxt} = 0$$
 is equivalent to

$$-ckv' + av' + \sum_{i=1}^{2} b_i v^{p_i} v' - kv''''' = 0.$$

So
$$(a-ck)\cosh^{-1}y + \frac{b_1}{p_1+1}(\cosh^{-1}y)^{p_1+1} + \frac{b_2}{p_2+1}(\cosh^{-1})^{p_2+1} - k(\cosh^{-1}y)^{p_2+1} - k(\cosh^{-1}y)^{p_2+1} - k(\cosh^{-1}y)^{p_2+1} = 0$$
 gives

$$a-ck = k$$
, $p_1 = 2$, $p_2 = 4$
 $\frac{b_1}{3} = -20k$ and $\frac{b_2}{5} = 24k$.

Acknowledgement. This paper is based on my Ph.D. thesis at Tulane University. I would like to thank Professor Jerome A. Goldstein for his encouragement and helpful suggestions.

References

- J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation, J. Diff. Eqns. 63 (1986), 117-134.
- 2. _____, On the decay of solutions of the generalized Benjamin-Bona-Mahony equation, J. Math. Anal. Appl. 141 (1989), 527-537.
- T. B. Benjamin, J. L. Bona and J. L. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. London, Ser. A, 272 (1972), 47-78.
- 4. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1963.
- 5. M. A. Park, Model Equations in Fluid Dynamics, Ph.D. dissertation, Tulane University, (1990).

- Ph. Rosenau, Dynamics of dense discrete systems, Prog. Theoretical Phys. 79 (1988), 1028-1042.
- 7. W. A. Strauss, Dispersion of low-energy waves for two conservative equations, Arch. Rational Mech. Anal. 55 (1974), 86-92.
- 8. F. Trèves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, New York, 1966.
- 9. K. Yosida, Functional Analysis, Springer-Verlag, 1980.

Department of Mathematics Tulane University New Orleans, LA 70118, U.S.A.