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FIXED POINT THEORY OF MULTIFUNCTIONS

IN TOPOLOGICAL VECTOR SPACES, 11

SEHIE PARK

1. Introduction

This is a continuation of our previous work [P5] which will be called
Part 1. In Part I, we applied an existence theorem of maximizable
quasiconcave functions on convex spaces to obtain coincidence, fixed
point, and surjectivity theorems, and existence theorems on critical
points of convex-valued multifunctions defined on convex subsets of a
topological vector space. Consequently, we could generalize and unify
many of historically well-known Brouwer or Kakutani type fixed point
theorems to a class of multifunctions more general than weakly inward
(outward) upper hemicontinuous ones defined on convex subsets of
topological vector spaces having sufficiently many linear functionals.

After we completed Part I, some new results on Kakutani maps were
obtained by the author and Bae [PB] and Idzik [I]. Moreover, in [P6­
9]' fixed point theorems on acyclic maps defined on convex subsets of
topological vector spaces were studied. Further, certain coincidence
theorems on acyclic maps or more general class of multifunctions were
applied to the KKM theory in the author's previous works [P6,lO].
Especially, [PIOl was motivated by the works of Ben-EI-Mechaiekh
and Deguire [BD1,2] on a very large class of "admissible" upper semi­
continuous multifunctions with non-convex values.

The purpose in this paper is, first, to give common generalizations
of some results in [P5], [PB], and [I]. This will give more adequate
understanding on the nature of the results on convex-valued multi­
functions in Part 1. Our second purpose is to obtain new fixed point or
related results on compact composites of non-convex valued "admissi­
ble" upper semicontinuous multifunctions defined on convex subsets of
topological vector spaces having sufficiently many linear funetionals.
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Many results in [PG-9] are substantially generalized. Consequently,
well-known results of Fan, Halpem and Bergman, Browder, Fitzpatrick
and Petryshyn, Reich, Ha, Granas and Liu, Idzik, and many others are
improved, extended, and unified.

2. Preliminaries

We mainly follow our previous works [PS,S].
A multifunction (or map) F : X -+ 2Y is a function from a set

X into the set 2Y of nonempty subsets of a set Y. As usual, F also
denotes its graph; that is, (x, y) E F if and only if yE Fx.

For topological spaces X and Y, a multifunction F : X -+ 2Y is said
to be upper semicontinuous (u.s.c.) if for each closed subset B of Y,
{x EX: Fx n B =1= 0} is closed; closed if F is closed in X x Y; and
compact if the range F(X) is contained in a compact subset of Y.

A nonempty topological space is acyclic if all of its reduced Cech
homology groups over rationals vanish.

A convex space X is a nonempty convex set (in a vector space) with
any topology that induces the Euclidean topology on the convex hulls
of its finite subsets. Such convex hull is called a polytope. A nonempty
subset L of a convex space X is called a c-compact set if for each finite
set Se· X there is a compact convex set Lse X such that LuSe Ls
[Lt]. Let [x,L] denote the closed convex hull of {x} U L in X, where
xEX.

A Hausdorff topological vector space is abbreviated as a t.v.s. In
Part I, we assumed that every t.v.s. is real, but not in this paper. Let
E be a t.v.s. and E* its topological dual. A multifunction F: X -+ 2E

defined on a topological space X is said to be upper hemicontinuous
(u.h.c.) if for each p E {Re h : h E E*} and for any real Ct', the
set {x EX: supp(Fx) < o:} is open in X. Note that an upper
semicontinuous (u.s.c.) function F : X -+ 2E is upper demicontinuous
(u.d.c.) and that an u.d.c. function is u.h.c.

Let c(E) denote the set of nonempty closed subsets of E, cc(E)
the set of nonempty closed convex subsets of E, and kc(E) the set of
nonempty compact convex subsets of E. Bd, Int, and - will denote
the boundary, interior, and closure, resp., with respect to E.

Let X C E and x E E. The inward and outward sets of X at x,
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Ix(x) and Ox(x), are defined as follows:

Ix(x):= x + Ur(X - x),
r>O

Ox(x) := x + Ur(X - x).
r<O

A function F : X -+ 2E is said to be weakly inward [resp. outward] if
Fx n l x (x) =1= 0 [resp. Fx n Ox(x) =1= 0] for each x E BdX\Fx.

For pE {Re h : h E E*} and U, V C E, let

dp(U, V) := inf{lp(u - v)1 : u E U, v E V}.

Recall that a real-valued function I : X -+ R. on a topological
space X is lower [resp. upper] semicontinuoU8 (1.s.c.) [resp. u.s.c.]
if {x EX: I x > r} [resp. {x EX: I x < r}] is open for each r E R.
H X is a convex set in a vector space, then I is quasiconcave [resp.
quasiconvex] if {x EX: Ix > r} [resp. {x EX: Ix < r}] is convex
for each r E R.

Given a class L of multifunctions, L(X, Y) denotes the set of multi­
functions T: X -+ 2Y belonging to L, and Le the set of finite compos­
ites of multifunctions in L.

For topological spaces X and Y, we define
T E K(X, Y) {=} T is a Kakutani map; that is, Y is a convex space

and T is u.s.c. with Tx E kc(Y) for x EX.
T E;: V(X, Y) {=} T is an acyclic map; that is, T is u.s.c. with

compact acyclic values.
We now introduce an abstract class 21 of multifunctions as in [PlO]:
A class 21 of multifunctions is one satisfying the following:

(i) 21 contains the class C of continuous functions;
(ii) each F E 21e is u.s.c. and compact-valued; and

(iii) for any polytope P, each F E 21c(P, P) has a fixed point.

Note that C, K, and V are examples of 21. See Park [PS]. Moreover,
the class of approachable maps in a t.v.s. [BDI] also belongs to 21.
For other examples of related classes, see [BDI,2], [L4], [PS].

T E 21~(X, Y) {=} for any compact subset K of X, there is a
rE 21c(K, Y) such that rx c Tx for each x EK.

A class 21~ will be called admissible. The class Kt due to Lassonde
[L2] and vt due to Park, Singh, and Watson [PSW] are examples of
21~. Note that 21 c 21e c 21~. For other examples, see Park [PlO].
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3. Convex-valued multifunctions in a t.v.s.

In this section, we give common generalizations of some results in
[P4], [PB], and [1]. In fact, fixed point or related results on convex­
valued multifunctions defined on convex subsets of a t.v.s. are gener­
alized.

For a convex space X, let X denote the set of all u.s.c. quasiconcave
real functions defined on X.

The following can be obtained by the same proof for [P5, Theorem
3]:

THEOREM A. Let X be a convex space, Lac-compact subset ofX,
K a nonempty compact subset of X, Eat.v.s. with topological dual
E*, B : E* -+ 2x a multifunction with convex graph, and F, G : X -+

2E . Suppose that for each h E E*,
(1) Xh := {x EX: supReh(Fx) ~ infReh(Gx)} is compactly

closed;
(2) for each x E K and each 9 E Bh, gx = max g(X) implies

x E X h ; and
(3) for each x E X\K and each 9 E Bh, gx = maxg[x,L] implies

x EXh.

Then there exists an x E n{Xh : h E E*}.

For a subset S of E, let coc S denote the intersection of all closed
halfspaces containing S [I]. Here, a closed halfspace means a set {x E
E : Re hx ~ r} for some h E E* and r E JR.

The following existence theorem of zero is the main result in this
section:

THEOREM 1. Let X, L, K, E, and B be the same as in Theorem A.
Let F : X -+ 2E satisfy the following for each h E E*:

(1.1) X h := {x EX: infReh(Fx) ~ O} is compactly closed in X;
(1.2) for each x E K and 9 E Bh, gx = maxg(X) implies x E Xh;

and
(1.3) for each x E X\K and 9 E Bh, gx = maxg[x, L] implies

xEXh •

Then there exists an x E X such that 0 E coc Fx.

Proof. Suppose that for each x E X we have 0 fj. coc Fx. Then
odoes not belong to a closed halfspace containing FXj that is, there
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exist an h E E* and atE R. such that Re h(O) = 0 < t ::; Re hy
for all y E Fx. So infRe h(Fx) > 0 and hence x f1. Xh. From (1.1)­
(1.3), by considering the ordered pair (0, F) instead of (F, G), all of the
requirements of Theorem A are satisfied. Therefore, we should have
an x E n{Xh : h E E*}, a contradiction.

We need the following:

LEMMA. For a subset 5 of a t. V.s. E,
(i) if E is locally convex and 5 E cc(E), then coc5 = 5; and
(ii) if E* separates points of E and 5 E kc(E), then coc 5 = 5.

Proof. It suffices to show that coc 5 C 5 under the hypothesis of
(i) or (ii). Suppose that there exists ayE (coc 5)\5. Then, by the
standard separation theorems on a t.v.s., there exist an h E E* and
atE R. such that Re hy < t < Re hz for all z E 5. This implies
y f1. coc 5, a contradiction.

From Theorem 1 and Lemma, we have the following in [PB, Theo­
rem 3]:

COROLLARY 1.1. In Theorem 1, further, suppose that either

(A) E* separates points ofE and co Fx is compact for each x EX;
or

(B) E is locally convex.

Then there exists an x E X such that 0 E coFx.

As we showed in [P5], [PH], Corollary 1.1 has many equivalent or
particular known results. Moreover, Corollary 1.1 is equivalent to [P5,
Theorem 5], which was stated for a closed-convex-valued multifunction.

From Theorem 1, by putting X = K and Bh = (Reh)lx for each
h E E*, we have the following:

COROLLARY 1.2. Let E be a t.v.s., K E kc(E), and F : K -+ 2E

satisfy the following for each p E {Re h : h E E*}:

(1) {x E K: infp(Fx)::; O} is closed; and
(2) for each x E BdK, px = maxp(K) implies infp(Fx) ::; O.

Then there exists an x E K such that 0 E coc Fx.

Proof. It suffices to show that x E Bd K in (2) can be replaced by
x E K. In fact, if x E Int K, then there exists an open neighborhood
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U of the origin of E such that x +U c Kj and if px = maxp{K), then
px + pu ~ px or pu ~ 0 for all u E U. Therefore, we must have p = 0
and hence infp(Fx) ~ O. This completes our proof.

REMARK. IT F is u.h.c., (I) clearly holds. In this case, Corollary 1.2
reduces Idzik [I, Theorem 1]. Moreover, note that (2) can be replaced
by

(2)' for each x E BdK, there exists a A > 0 and a u E Fx such
that x + AU E K.

In fact, if px = maxp{K), then p{x + AU) = px + Apu ~ px, whence
pu ~ O. Since U E Fx, we have infp{Fx) ~ o. Idzik [I, Theorem
10] obtained a particular form of Corollary 1.2 under the assumption
(2)'. FUrther, note that [I, Corollary 11] is a particular form of [PB,
Theorem 2].

From Theorem 1, we have the following fixed point theorem:

THEOREM 2. Let X be a convex space, Lac-compact subset of
X, K a nonempty compact subset of X, Eat.v.s. containing X as a
subset, and F : X ~ 2E . Suppose that for each pE {Reh : hE E*}
the following holds:

(2.0) plx is continuous on X;
(2.1) X p := {x EX: infp(Fx) ~ px} is compactly closed in X;
(2.2) dp(Fx,lx (x» = Ofor every x E K n 13dX; a'lld
(2.3) dp(Fx,IL {x» = 0 for every x E X\K.

Then there exists an x E X such that x E cocFx.

Proof. We use Theorem 1 with Bh = {Re hl x } for each h E E*.
Considering Fx - x instead of Fx in Theorem 1, (2.1) implies (1.1).
Since Ix(x) = E for x E Int X, (2.2) is actually equivalent to the
following:

(2.2)' dp(Fx,Ix{x» = 0 for every x E K.
We show that (2.2)' implies (1.2) for Fx - x. Let x E K such that
px = maxp{X). Suppose that infp(Fx) > px. Then, for any v E Fx,
z = x + r{u - x) E Ix{x), U E X, and r > 0, we have

Ip(v - z)1 ~ p{v - x) + rp{x - u) ~ p{v - x)

and hence

dp{Fx,lx {x» = dp{Fx, Ix{x» ~ pv - px ~ infp{Fx) - px > o.
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This contradicts (2.2)'. Similarly, (2.3) implies (1.3). Therefore, by
Theorem 1, we have an x E X such that 0 E coc(Fx - x); that is,
x E cocFx.

The following is a dual form of Theorem 2 and a surjectivity result:

THEOREM 2'. Let X,L,K,E, and F be the same as in Theorem 2.
Suppose that for each P E {Re h : h E E*} the following holds:

(2.0) plx is continuous on X;
(2.1)' X p = {x EX: supp(Fx) ~ px} is compactly closed in X;
(2.2)' dp(Fx, Ox(x)) = 0 for every x E K n BdX; and
(2.3)' dp(Fx, OL(X)) = 0 for every x E X\K.

Then there exists an x E X such that x E coc Fx. Moreover, if F is
u.h.c., then (cocF)(X) :) X.

Proof. Considering 2x - Fx instead of Fx in Theorem 1, as in the
proof of Theorem 2, we conclude that coc F has a fixed point. For
the surjectivity result, let y E X. Consider Fx - y instead of Fx and
[y, L] instead of L in Theorem 1. Then there exists an x E X such that
oE coc(Fx - y); that is, y E cocFx. This completes our proof.

REMARKS. 1. In Theorems 2 and 2', we do not require any concrete
connection between topologies of X and E except

(2.0) plx E X (thatis,plxis continuous) forallpE {Reh: h E E*}.

In order to assure the continuity of plx for all P E {Reh : hE E*}, it
is sufficient to assume that

(i) as a convex space, X has any topology finer than the relative
weak topology with respect to E, and

(ii) E has a topology finer than its weak topology.
2. Therefore, in some results in Part I, the expression "E a Lv.s.

containing X such that the topology of X is finer than its relative
topology w.r.L E" can be replaced by "E a t.v.s. containing X as a
subset, and assume (2.0)". Such results in Part I are Corollaries 3.1,
4.1,4.2, 5.1, and 6.1, and Theorems 6,7, and 8.

In view of Lemma, Theorems 2 and 2' impliy the following in [PB,
Theorem 4], [P5, Theorem 6]:
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COROLLARY 2.1. In Theorems 2 and Z, further, suppose that either

(A) E* separates points ofE and co Fx is compact for each x EX;
or

(B) E is locally convex.

Then~ there exists an x E X such that x E coFx. Moreover, for the
outward case, if F is u.h.c., then (coF)(X)::> X.

As we showed in [PB], [P5], Corollary 2.1 has many particular
known results. One of the simplest case of Corollary 2.1 is given in
[P4] as a generalization of the Brouwer fixed point theorem.

From Theorem 2 or 2' with X = K, we have the following:

COROLLARY 2.2. Let E be a t.v.s., K E kc(E), and F : K -+ c(E)
an u.h.c. multifunction such that for each P E {Re h : h E E*} and
x E BdK, we have

Then there exists an x E K such that x E cocFx. Further, for the
outward case, we have (cocF)(K) ::> K.

Note that Corollary 2.2 contains Idzik [I, Corollary 2] and many
well-known fixed point theorems. See Part 1.

4. Compact admissible maps in a t.v.s.

In this section, we obtain mainly sufficient conditions for the exis­
tence of fixed points of compact admissible maps defined on a convex
subset of a t.v.s. E on which its topological dual E* separates points.
Our arguments are based on a geometric property of a convex set and a
variational inequality related admissible maps developed in our previ­
ous work [PlO]. Our new results extend earlier works on acyclic maps
in [P7-9] to admissible maps.

We begin with the following particular form of minimax inequality
with respect to an admissible map given in [PlO, Theorem 11].

THEOREM B. Let X be a convex space, Y a Hausdorff space, T E
2(~(X,Y) a compact multifunction, and f,g: X xY -+ R two extended
real-valued functions such that

(1) g(x, y) ~ f(x, y) for each (x, y) E X x Y;
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(2) for each x EX, Y 1-+ g(x, y) is lower semicontinuous on Y; and
(3) for each yE Y, X 1-+ f(x,y) is quasiconcave on X.

Then there exists ayE T(X) such that

sup g(x, y) ~ sup f(x, v).
xEX (x,Y)ET

REMARK. For V instead of 21~, Theorem B is essentially due to
Granas and Liu [GL, Theorem 7.1] as a generalization of the celebrated
1972 minimax inequality of Ky Fan [F5]. When f = g, T E IK(X, Y),
and Y is a compact convex space, Theorem B reduces to Ha [H, The­
orem 1], where the Hausdorffness of X is superfluous. A far-reaching
generalization of Theorem B is given in a recent work of the author
[PlO].

The following is a variant of Theorem B with a lopsided saddle point.

THEOREM 3. Let X be a compact convex space, Y a Hausdorff
space, and T E 2(~(X, Y). Let 4> : X x Y -t lR be a continuous
function such that for each y E Y, X I-t 4>(x, y) is quasiconvex on X.
Then there exists an (xo, Yo) E T such that

4>(xo, YO) ~ 4>(x, Yo) for all x E X ..

Proof. Since X is compact, we may assume that T E 21c(X, Y).
Define f : X x Y -t lR by

f (x, y) = min 4>( z, y) - 4>( x, y)
zEX

for (x, y) E X x Y. Then it is easy to see that f is continuous on
X x Y [A, p.70] and satisfies (1), (2), and (3) of Theorem B with
f = g. Moreover, T is compact since it is u.s.c. and compact-valued.
Therefore, by Theorem B, there exists ayE Y such that

sup f(x,y) ~ sup f(x,y).
xEX (x,y)ET

Since x I-t 4>f...x, y) is continuous on the compact set X, there exists an
x E X such that 4>(x, y) = minzEx 4>(z, y) or f(x, y) = o. Hence, we
have

o~ sup f(x, v).
(x,y)ET

Since the graph of T is closed and hence compact in X x Y, the supre­
mum in the above inequality is attained. This completes our proof.
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REMARK. For T E K(X, Y), Theorem 3 reduces to Ha [H, Theorem
2]. For X = Y and T = lx, the identity function of X, .Theorem 3
reduces to Fan [F5, Corollary 1]. Moreover, for a normed vector space
E = Y, a single-valued T, and </>(x, y) = IIx - YII, Theorem 3 reduces
to Fan [F4, Theorem 2].

A direct consequence of Theorem 3 is as follows:

COROLLARY 3.1. Let E be a metric t.v.s. where the metric d on E
has been chosen so that balls are convex, X a compact convex subset
of E, and T E 21~(X, E). Then there exists an (xo, Yo) E T such that

d(xo, Yo) ~ d(x, yo) for all x E X.

Further, ifT E 21~(X, X), then T has a fixed point.

Proof. In view of Theorem 3 with </> = d, it suffices to show that,
for each y E E, x 1--+ d(x, y) is quasiconvex on X. In fact, for each real
>.,

{x EX: d(x, y) < >.} = X n {x E E : d(x, y) < >'}

is convex. This shows the first part. The second part is trivial.

REMARK. Note that certain axiom of the metric d is not necessary.
If T is single-valued, Corollary 3.1 reduces to Cellina [Cl, Fan [F4],
Rassias [Ra], and Park [P3], which in turn generalize the well-known
fixed point theorems of Brouwer [B] and Schauder [S]. Moreover, for
T E K(X, X), Corollary 3.1 generalizes other well-known theorems of
Kakutani [Kk] and Bohnenblust and Karlin [BK]. See [Pt-5].

Let P denote the family of all weakly continuous seminorms on a
t.v.s. E.

As another application of Theorem 3, we obtain the following Ky
Fan type fixed point theorem:

THEOREM 4. Let X be a compact convex space, Eat.v.s. on
which E* separates points such that E contains X as a subset and,
for each pEP, (x,y) 1--+ p(x - y) is continuous for (x,y) E X x E,
and T E 21~(X, E). Then either T has a fixed point or there exist an
(xo, Yo) ET and apE P such that

0< p(xo - Yo) ~ p(x - Yo) for all x E Ix(xo).
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Proof. It suffices to prove for T E 2tc(X, E). Suppose that T has no
fixed point. Then, for each x EX, the origin 0 of E does not belong
to the compact set K := x - Tx. For each z E K there exists a linear
functional i z E E* such that iz(z) f:. O. Since i z is continuous, there
exists an open neighborhood Uz of z such that iz(y) f:. 0 for every
yE Uz. Let {Uzp ... ,Uz.J be a finite subcover of the cover {Uz}zEK
of K and

n

Px(Y) := L lizi(y)1 for each yE E.
i=l

Then Px E P such that Px(z) > 2Sx for all z E K for some Sx > O.
Since T is u.s.c., there exists an open neighborhood Vx of x in X

such that Px(u-v) > Sx for all u E Vx and v E Tu. Since {Vx : x E X}
covers X and X is compact, there exists a finite subcover {VX1 ' ••• , VXk }

of X. Let p:= max{PXi : 1 ~ i ~ k} and S:= min{SXi : 1 ~ i ~ k} >
O. Then pEP and p(x - y) > S for all (x,y) E T.

We define a function </> : X X Y _ lR by </>(x, y) = p(x - y) for
(x, y) E X x Y, where Y := T(X) is compact. Then clearly </> and T
satisfy all of the requirements of Theorem 3. Therefore, there exists
an (xo, Yo) E T such that

0< p(xo - Yo) ~ p(x - Yo) for all x E X.

Now we show that the above inequality holds for all x E /x(xo). In
fact, for x E Ix(xo)\X, there exist u E X and r > 1 such that x =
Xo + r(u - xo). Suppose that p(x - YO) < p(xo - yo). Since

1 1
-x + (1 - - )xo = u E X,
r r

we have

1 1
p(u - YO) ~ -p(x - YO) + (1 - - )p(xo - YO) < p(xo - yo),

r r

which is a contradiction. Therefore p(xo - yo) ~ p(x - Yo) holds for all
x E Ix(xo); that is, for all x E /x(xo).
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THEOREM 4'. Let X be a compact convex space, Eat.v.s. on
which E* separates points such that E contains X as a subset and, for
each pEP, (x, Y) I-t p(X - y) is continuous for (x, y) E X x E, and
T E ~~(X,E). Let T': X -+ 2E be given by T'x = 2x-Tx for x E X.
Suppose that T' E ~~(X, E). Then either T has a fixed point or there
exist an (xo, Yo) E T and apE P such that

0< p(xo - Yo) ~ p(x - Yo) for all x E Ox(xo).

Proof By the above inward case, there exist an (XO,Yl) E T' and a
pEP such that

0< p(xo - Yl) ~ p(x/ - yI) for all x' E Ix(xo).

For x E Ox(xo), let x' = 2xo - x and Yl = 2xo - Yo where Yo E Txo.
Then we have

0< p(xo - Yo) :::; p(x - Yo) for all x E Ox(xo),

and hence, for all x E 0 x(xo). Therefore the conclusion of Theorem 4
holds for Ox(xo) instead of Ix(xo).

REMARKS. 1. As in Remarks of Theorems 2 and 2/, in Theorems 4
and 4', as a convex space, X can have any topology such that, for each
pEP, (x, y) I-t p(x - y) is continuous for (x, y) E X x E.

2. Note that the Xo in the conclusions of Theorems 4 and 4' belong
to BdX. In fact, suppose that Xo E IntX. Then Xo is an internal
point and Ix(xo) = Ox(xo) = E. By putting x = Yo, we have 0 <
p(xo - Yo) :::; 0 in the conclusions, which is a contradiction.

3. For a locally convex t.v.s. andT E ][{(X, E), Theorems 4 and 4'
reduce to Park [P2, Theorem 2] and Reich [R2, Theorem 2], and im­
prove Ha [H, Theorem 3] and Fan [F4, Theorem 1]. For T E VeX, E),
Theorems 4 and 4/ reduce the results in [P7,9].

As a direct consequence of Theorem 4, we have the following:

THEOREM 5. Let X be a compact convex space, E a t.v.s. on
which E* separates points such that E contains X as a subset and, for
each pEP, (x,y) I-t p(x - y) is continuous for (x,y) E X x E, and
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T E 21~(X, E). HT satisfies one of the following conditions, then T
has a fixed point.

For each x E BdX,
(0) for each Y E Tx and each pE 'P, p(y - x) > 0 implies p(y - x) >

p(y - z) for some z E l x (x).
(i) for each y E Tx, there exists a number A (real or complex,

depending on whether the vector space E is real or complex) such that

IAI < 1 and AX + (1- A)Y E l x (x).

(ii) Tx C l x (x).
(iii) for each yE Tx, there exists a number A (as in (i)) such that

IAI < 1 and AX + (1 - A)Y EX.

(iv) Tx C 1Fx(x):= {x + c(u - x) : u E X, Rec > 1/2}.
(v) Tx eX.
(vi) T(X) C x.
Proof (0) Clear from Theorem 4.
(i) For any p E 'P satisfying p(y - x) > 0, put z = AX + (1 - A)y

in (0). Then we have

p(y - z) = p(AY - AX) = IAlp(y - x) < p(y - x)

since IAI < 1.
(ii) If Tx c l x (x), then for each Y E Tx, we can choose A = 0 in

(i).
(iii) Since Xc Ix(x), we clearly have (iii) => (i).
(iv) Note that (iv) {:::::? (iii) [Rl].
(v) If Tx C X, then for each y E Tx, we can choose A = 0 in (iii).
(vi) Clearly, we have (vi) => (v).

REMARKS. 1. If T' E 21~(X, E) as in Theorem 4', then the inward
sets in (0), (i), (ii), and (iv) can be replaced by the corresponding
outward sets.

2. Even for V and for a locally convex t.v.s., to the best of our
knowledge, only Case (vi) of Theorem 5 is known except Park [PS,9].
In this case, X is an le space and hence Theorem 5(vi) follows from
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Begle [B, Theorem 1]. Note that in (0) "each y E Tx" can not be
replaced by "there is ayE Tx" as noted by Reich [RI, Example 1.2].
For some other conditions equivalent to (0), see [R3].

3. Following Halpern [Ha], for a subset D of a normed vector space
E, we define

nv(x) = {y E E : y -I x, lIy - xli SlIy - zll for all zED}

for x E D, and consider a "nowhere normal outward" multifunction
T: D -t 2X j that is,

(0)' Txnnv(x)=0 for xED.

Then (0)' clearly implies (0). Particular forms of Theorem 5 for V with
Condition (0)' for a normed vector space are given by Fitzpatrick and
Petryshyn [FP, Theorem 3(i)], Reich [R2, Theorem 3.3(a)], Halpern
[Ha, Theorem 20], and Halpern and Bergman [HB, Theorem 2.1].

4. Particular forms of Theorem 5(ii) for V are given by Fitzpatrick
and Petryshyn [FP, Corollary 1] and Halpern [Ha, Corollaries 21 and
22]. Moreover, for the outward case in Theorem 5(ii), we have the
surjeetivity X c T(X) as in [PS} and Halpern [Ha, Corollary 23]. Note
that Halpern [Ha, Theorem 19} is a simple consequence of Theorem
5(vi).

5. For aTE K(X,E), single-valued or multi-valued, each case of
Theorem 5 generalizes historically well-known results as follows:

(0) Reich [RS, Theorem 7], [R3, Theorems 1 and 2], and Browder
[Br2, Corollary to Theorem 9].

(i) Park [P2, Theorem 4].
(ii) Browder [Brl, Theorems 1 and 2} and Halpern and Bergman

[HB, Theorems 4.1 and 4.3}.
(iii) Fan [F4, Theorem 3], Ha [H, Theorem 4], and Kaczynski [Ka,

Thooreme I}.
(iv) Reich [R2, Theorem 3.1].
(v) Rothe [Ro].
(vi) Brouwer [B], Schauder [8, Satz 1], Tychonoff [T, Satz], Kaku­

tani [Kk, Theorem I}, Bohnenblust and Karlin (BK], Glicksberg (G,
Theorem], Fan [FI, Theorem 1], [F3, Corollaire 3], and Granas and
Liu [GL, Theorem 10.5].
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6. As in Reich [R3], Condition (0) can be reformulated using the
subdifferential 8p of p. Moreover, as Reich [R3] noted, Theorem 5 is
also valid for lower semicontinuous T : X ---t 2E if E is completely
metrizable and if T has closed convex values. This follows from the
Michael selection theorem and Theorem 4.

7. In Theorem 5, since T is compact, if T is convex-valued, then
upper semicontinuity of T can be replaced by upper demicontinuity or
upper hemicontinuity. For the literature, see [PS].

8. If T E K(X, E), then more general conditions than (O)-(vi) suffice
for the existence of fixed points. See [PS,6]. In this case, e.g., (ii) can
be replaced by T x n [x (x) =1= 0. However, this is not true even for
T E V(X, E).

EXAMPLE. Let E = ]R2, X = [-1,1] x {O}, and T E VeX, E) such
that, for each x EX, Tx is the union of two segments joining (-2,0)
and (0,1), (0,1) and (2,0). Then T is a constant acyclic map and
Tx n [x(x) =1= 0 for x E X. However, T has no fixed point.

As an application of Theorem 5, we have the following:

COROLLARY 5.1. Let E be a t.v.s. on which E* separates points
and K E kc(E). Then a continuous affine map I : K ---t E satisfying
KC IK has a fixed point.

Proof. Let T = I-I ; I K ---t 2K . Then T E K(JK, I K). Therefore,
by Theorem 5(vi), there exists an x E K such that x E I-Ix; that is,
x = Ix.

For the outward case (ii), we have the following surjeetivity result:

THEOREM 6. Let X, E, and T be the same as in Theorem 5 such
that T' E 2t~(X, E), where T'x = 2x - Tx for x E X. HTx c Ox(x)
for each x E BdX, then T has a fixed point and T(X) ::) X.

Proof. By Theorem 5(ii), T has a fixed point. Suppose X rt. T(X).
We may assume that the origin 0 is a point of X\T(X). The comple­
ment U of T(X) is a neighborhood of 0, so we can choose c > 1 such
that cU ::) X. Then cT(X) is disjoint from X, and so the map cT
can have no fixed point. However, since the weakly outward set Ox(x)
is closed under the multiplication by a constant c > 1 ([HB, Lemma
4.2]), cTx C Ox(x) for all x E X. This is a contradiction.
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REMARK. We followed the proof of [HB, Theorem 4.3], which is
the single-valued case of Theorem 6.

Untili now in this section, we mainly considered admissible maps
defined on a compact convex subset of a t.v.s. having sufficiently many
linear functionals. However, for a locally convex t.v.s., we have a result
on compact admissible maps in our previous work [PlO]:

THEOREM C. Let X be a nonempty convex subset of a locally con­
vex: t.v.s. E. HT E ~c(X,X) is compact, tben T bas a fixed point.

As an application of Theorem C, we obtain the following acyclic
version of Reich's theorem [R4] on condensing maps with the Leray­
Schauder boundary condition. For the definition of condensing multi­
funtions, see Su and Sehgal [SS].

THEOREM 7. Let C be a nonempty closed subset of a locally convex:
t. V.s. E and T : C -+ 2E an u.s.c. multifunction witb closed acyclic
values. Suppose tbat T bas a botmded range, and tbat tbere is a point
w E Int C such tbat

(L-S) for every x E Bd C and y E Tx,

y - w i= m(x - w) for all m > 1.

Tben T bas a fixed point if one of tbe following bolds: .

(i) T is compact.
(ii) T is condensing and E is quasi-complete.

(iii) T is condensing witb compact values and C is quasi-complete.

Proof. Just follow the proof of Reich [R4] and use Theorem C in­
stead of Himmelberg [Hi, Theorem 2].

REMARK. If T has convex values, then Theorem 7 reduces to Reich
[R4, Theorem].

References

[A] J.-P. Aubin, Mathematical Methods of Game and Economic Theory, Rev. 00.,
North-Holland Pub. Co., Amsterdam, 1982.

[Be] E. G. Begle, A fixed point theorem, Ann. Math. (2) 51 (1950), 544-550.
[BD1] H. Ben-EI-Mechaiekh and P. Deguire, Approzimation of non-convex set­

valued maps, C. R. Acad. Sci. Paris 312 (1991), 379-384.



Fixed Point Theory of Multifunctions in Topological Vector Spaces, 11 429

[BD2] , General fi:ted point theorems for non-convex set-valued maps, C. R.
Acad. Sci. Paris 312 (1991), 433-438.

[BK] H. F. Bohnenblust and S. Karlin, On a theorem of Ville, in "Contributions
to the Theory of Games," Ann. Math. Studies, No. 24 (1950), Princeton Univ.
Press, 155-160.

[B] L. E. J. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann. 71
(1912),97-115.

[Brl] F. E. Browder, A new generalization of the Schauder fi:ted point theorem,
Math. Ann. 114 (1967), 285-290.

[Br2] , Coincidence theorems, minimax theorems, and variational inequali-
ties, Contemp. Math. 26 (1984), 67-80.

ICl A. Cellina, Multi-valued junctions and multi-valued flows, Univ. of Maryland,
IFDAM Report BN--615, August, 1969.

[Fl] Ky Fan, Fized-point and minimax theorems in locally convex topological linear
spaces, Proc. Nat. Acad. Sci. USA 38 (1952), 121-126.

[F2] , A generalization of Tychonofl'lI fi:ted point theorem, Math. Ann. 142
(1961), 305-310.

[F3] , Sur un theoreme minimax, C. R. Acad. Sci. Paris 2S9 (1964),3925-
3928.

[F4] , Extensions of two fi:ted point theorems of F. E. Browder, Math. Z.
112 (1969), 234-240.

[F5] , A minimax inequality and applications, in "Inequalities Ill" (0. Shish-
a, Ed.), pp.l03-113, Academic Press, New York, 1972.

[FP] P. M. Fitzpatrick and W. V. Petryshyn, Fized point theorems for multivalued
acyclic mappings, Pacific J. Math. S4 (1974), 17-23.

[G] I. L. Glicksberg, A jurther generalization of the Kakutani fi:ted point theorem,
with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952),
170-174.

[GG] L. G6rniewicz and A. Granas, Topology of morphisms and fi:ted point problems
for set-valued maps, in "Fixed Point Theory and Applications" (M. A. Thera
and J.-B. Baillon, Eds.), pp. 173-191, Longman Scientific & Technical, Essex,
1991.

[GL] A. Granas and F.-C. Liu, Coincidences for set-valued maps and minimax
inequalities, J. Math. pures et appl. 65 (1986), 119-148.

[H] C.-W. Ha, On a minimax inequality of Ky Fan, Proc. Amer. Math. Soc. 99
(1987), 680-682.

(HB] B. R. Halpern and G. M. Bergman, A fi:ted-point theorem for inward and
outward maps, 'I'rans. Amer. Math. Soc. 130 (1968), 353-358.

[Ha] B. R. Halpem, Fized point theorems for set-valued maps in infinite dimen­
sional spaces, Math. Ann. 189 (1970), 87-98.

[Hi] C. J. Himmelberg, Fixed points of compact multijunctions, J. Math. Anal.
Appl. 38 (1972), 205-207.

(I] A. Idzik, Fixed point theorems in not necessarily locally convex spaces, Preprint.



430 Sehie Park

[Ka] T. Kaczynski, Quelques theoremes de points fixes dans des espaces ayant
suffisamment de functionnelles lineaires, C. R. Acad. Sci. Paris 296 (1983),
873-874.

[Kk] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math.
J.8 (1941),457-459.

[Ll] M. Lassonde, On the use of KKM multifunctions in fixed point theory and
related topics, J. Math. Anal. Appl. 97 (1983), 151-201.

[L2] , Reduction du cas multivoque au cas univoque dans les problemes de
coincidence, in "Fixed Point Theorey and Applications" (M. A. Thera and J.-B.
Baillon, Eds.), pp.293-302, Longman Scientific & Technical, Essex, 1991.

[PI] Sehie Park, Fixed point theorems on compact convex sets in topological vector
sapces, Contemp. Math. 12 (1988), 183-191.

[P2] , Fixed point theorems on compact convex sets in topological vector
spaeces, Il, J. Korean Math. Soc. 26 (1989), 175-179.

[P3] , Generalizations of Ky Fan's matching theorems and their applica-
tions, J. Math. Anal. Appl. 141 (1989), 164-176.

[P4] , A generalization of the Brouwer fixed point theorem, Bull. Korean
Math. Soc. 28 (1991), 33-37.

[P5] , Fixed point theory of multifunctions in topological vector spaces, J.
Korean Math. Soc. 29 (1992), 191-208.

[P6] , Some coincidence theorems on acyclic multifunctions and applications
to KKM theory, in "Fixed Point Theory and Applications" (K.-K.Tan, Ed.),
pp.248-217, World Scientific Publ. Co., Singapore, 1992.

[P7] , Acyclic maps, minimax inequalities, and fixed points, Nonlinear Anal.,
TMA, to appear.

[P8] , .Cyclic coincidence theorems .. far acyclic multifunctions on convex
. spaces, J. Korean Math. Soc. 29 (1992), 333-339.

[P9] , Fixed points of acyclic maps on topological vector spaces, Proc. 1st
World Congress of Nonlinear Anlaysts, to appear..

[PlO] , Foundations of the KKM theory via coincidences of composites of
upper semicontinuous maps, to appear.

[PB] Sehie Park and J. S. Bae, On zeros and fixed points of multifunctions with
non-compact convex domains, Comm. Math. Univ. Carol. 34 (1993), No.2, to
appear.

[PSW] S. Park, S.P. Singh, and B. Watson, Some fixed point theorems for compo­
sites of acyclic maps, Proc. Amer. Math. Soc., to appear.

[Ra] T. M. Rassias, On fixed point theory in non-linear analysis, Tamkang J. Math.
8 (1977), 233-237.

[RI] S. Reich, Fixed points in locally convex spaces, Math. Z. 125 (1972), 17-31.
[R2] , Approximate selections, best approximations, fixed points, and invari-

ant sets, J. Math. Anal. Appl. 62 (1978), 104-113.
[Ra] , Fixed point theorems for set-valued mappings, J. Math. Anal. Appl.

69 (1979), 353-358.
[R4] , A remark on set-valued mappings that satisfy the Leray-Schauder

condition, 11, Rend. Accad. Naz. Lincei 66 (1979), 1-2.



Fixed Point Theory of Multifunctions in Topological Vector Spaces, II 431

[R5] , Some problems and results in fixed point theory, Contemp. Math. 21
(1983),179-187.

[Ro] E. H. Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in
Banachschen Raumen, Comp. Math. 5 (1937),177-197.

[S] J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math. 2 (1930),
171-180.

[SS] C.-H. Su and V. M. Sehgal, Some fixed point theorems for condensing multi­
functions in locally convex spaces, Proc. Amer. Math. Soc. 50 (1975), 150-154.

[T] A. Tychonoff, Ein FixpunktIJatz, Math. Ann. 111 (1935), 767-776.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea




