ON 3-DIMENSIONAL ALMOST CONTACT METRIC MANIFOLDS*

Jae-Bok Jun, In-Bae Kim and Un Kyu Kim

The various structures on almost contact metric manifolds have been studied by many authors([2],[5],[6],[9],[11]). The purpose of the present paper is to study the structures on 3 -dimensional almost contact metric manifolds.

1. Preliminaries

Let M be a $(2 n+1)$-dimensional differentiable manifold of cass C^{∞} covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$ in which there are given a tensor field $\phi_{i}{ }^{h}$ of type (1,1), a vector field ξ^{h} and a 1-form η_{i} satisfying

$$
\begin{equation*}
\phi_{j}^{i} \phi_{i}^{h}=-\delta_{j}^{h}+\eta_{j} \xi^{h}, \phi_{i}^{h} \xi^{i}=0, \eta_{i} \phi_{j}^{i}=0, \eta_{i} \xi^{i}=1, \tag{1.1}
\end{equation*}
$$

where the indices $h, i, j \ldots$ run over the range $\{1,2, \ldots, 2 n+1\}$. Such a set of a tensor field ϕ of type (1,1), a vector ξ and a 1 -form η is called an almost contact structure and a manifold with an almost contact structure an almost contact manifold. If, in an almost contact manifold, there is given a Riemannian metric $g_{j i}$ such that

$$
\begin{equation*}
g_{t s} \phi_{j}^{t} \phi_{i}^{s}=g_{j i}-\eta_{j} \eta_{i}, \eta_{i}=g_{i h} \xi^{h}, \tag{1.2}
\end{equation*}
$$

then the almost contact structure is said to be metric and the manifold is called an almost contact metric manifold $([1])$.

An almost contact structure (ϕ, ξ, η) on M is said to be normal if

$$
N_{j i}^{h}+\left(\partial_{j} \eta_{i}-\partial_{i} \eta_{j}\right) \xi^{h}=0 \text { or }[N(x, y)=[\phi, \phi](x, y)+(d \eta)(x, y)=0],
$$

[^0]* Supported by TGRC-KOSEF.
where

$$
N_{j i}^{h}=\phi_{j}^{t} \partial_{t} \phi_{i}^{h}-\phi_{i}^{t} \partial_{t} \phi_{j}^{h}-\left(\partial_{j} \phi_{i}^{t}-\partial_{i} \phi_{j}^{t}\right) \phi_{t}^{h}
$$

is the Nijenhuis tensor formed with ϕ_{i}^{h} and $\partial_{j}=\partial / \partial x^{j}$. We denote ∇ the covariant differentiation with respect to the Riemannian connection of g and denote $\phi_{j i}=\phi_{j}^{h} g_{h i}$. An almost contact metric structure (ϕ, ξ, η, g) on M is said to be
(a) contact ([1]), if $\phi_{j i}=\frac{1}{2}\left(\partial_{j} \eta_{i}-\partial_{i} \eta_{j}\right)$,
(b) K-contact ([1]), if $\nabla_{i} \eta_{j}=\phi_{i j}$,
(c) nearly Sasakian ([5]), if $\nabla_{k} \phi_{j}^{h}+\nabla_{j} \phi_{k}^{h}=-2 g_{k j} \xi^{h}+\delta_{k}^{h} \eta_{j}+\delta_{j}^{h} \eta_{k}$,
(d) quasi Sasakian ([2]), if $\phi_{j i}$ is closed and (ϕ, ξ, η) is normal,
(e) Sasakian ([1]), if $\phi_{j i}=\frac{1}{2}\left(\partial_{j} \eta_{i}-\partial_{i} \eta_{j}\right)$ and (ϕ, ξ, η) is normal,
(f) nearly cosymplectic ([1], [3]), if ϕ_{j}^{h} is Killing,
(g) quasi cosymplectic ([7]), if $\nabla_{k} \phi_{j i}+\phi_{k}^{t} \phi_{j}^{s} \nabla_{t} \phi_{s i}-\eta_{j} \phi_{k}^{t} \nabla_{t} \eta_{i}=0$,
(h) closely cosymplectic ([4]), if ϕ_{j}^{h} is Killing and η_{i} is closed,
(i) almost cosymplectic ([9]), if $\phi_{j i}$ and η_{j} are closed,
(j) cosymplectic ([1]), if $\phi_{j i}$ and η_{j} are closed and (ϕ, ξ, η) is normal.

We note the following schematic array of structures ([8]).

If we put

$$
E_{k j i h}=\phi_{k j} \phi_{i h}-\left(g_{k i}-\eta_{k} \eta_{i}\right)\left(g_{j h}-\eta_{j} \eta_{h}\right)+\left(g_{j i}-\eta_{j} \eta_{i}\right)\left(g_{k h}-\eta_{k} \eta_{h}\right),
$$

then we have $E_{k j i h} E^{k j i h}=12 n(n-1)$.
In a 3 -dimensional almost contact metric manifold, $E_{k j i h}$ is a zero tensor.

Thus we have
Lemma 1. In a 3-dimensional almost contact metric manifold, $E_{k j i h}$ vanishes identically, that is,

$$
\begin{align*}
\phi_{k j} \phi_{i h} & =\left(g_{k i}-\eta_{k} \eta_{i}\right)\left(g_{j h}-\eta_{j} \eta_{h}\right)-\left(g_{j i}-\eta_{j} \eta_{i}\right)\left(g_{k h}-\eta_{k} \eta_{h}\right) . \tag{1.3}\\
& =\Upsilon_{k i} \Upsilon_{j h}-\Upsilon_{j i} \Upsilon_{k h},
\end{align*}
$$

where $\Upsilon_{j i}=g_{j i}-\eta_{j} \eta_{i}$.
On the other hand, it is well known that the conformal curvature tensor of Weyl vanishes identically in a 3 -dimensional Riemannian manifold. Therefore the curvature tensor $K_{k j i}{ }^{h}$ of a 3-dimensional almost contact metric manifold M is given by

$$
\begin{equation*}
K_{k j i}^{h}=-K_{k i} \delta_{j}^{h}+K_{j i} \delta_{k}^{h}-g_{k i} K_{j}^{h}+g_{j i} K_{k}^{h}+\frac{K}{2}\left(g_{k i} \delta_{j}^{h}-g_{j i} \delta_{k}^{h}\right), \tag{1.4}
\end{equation*}
$$

where $K_{j i}$ and K are the Ricci tensor and the scalar curvature of the manifold respectively.

Differentiating (1.3) covariantly, we obtain, in a 3 -dimensional almost contact metric manifold,

$$
\begin{aligned}
\phi_{i h} \nabla_{e} \phi_{k j}+\phi_{k j} \nabla_{e} \phi_{i h}= & -\left(\eta_{i} \nabla_{e} \eta_{k}+\eta_{k} \nabla_{e} \eta_{i}\right) \Upsilon_{j h}-\Upsilon_{k i}\left(\eta_{h} \nabla_{e} \eta_{j}+\eta_{j} \nabla_{e} \eta_{h}\right) \\
& +\left(\eta_{i} \nabla_{e} \eta_{j}+\eta_{j} \nabla_{e} \eta_{i}\right) \Upsilon_{k h}+\Upsilon_{j i}\left(\eta_{h} \nabla_{e} \eta_{k}+\eta_{k} \nabla_{e} \eta_{h}\right)
\end{aligned}
$$

Transvecting this equation with $\phi^{k j}$ and using $\phi^{k j} \phi_{k j}=2$, we have

$$
\begin{equation*}
\nabla_{e} \phi_{i h}=\left(\nabla_{e} \eta_{t}\right) \phi_{h}^{t} \eta_{i}-\left(\nabla_{e} \eta_{t}\right) \phi_{i}^{t} \eta_{h} . \tag{1.5}
\end{equation*}
$$

2. 3-dimensional K-contact manifolds

Let M be a 3 -dimensional K-contact manifold. Then we have

$$
\begin{equation*}
\nabla_{i} \xi^{h}=\phi_{i}^{h} \tag{2.1}
\end{equation*}
$$

The equation (2.1) shows that ξ^{h} is a Killing vector field. Hence we have

$$
\begin{equation*}
\nabla_{j} \phi_{i}^{h}+K_{t j i}{ }^{h} \xi^{t}=0 . \tag{2.2}
\end{equation*}
$$

It is well known ([1]) that on a 3 -dimensional K-contact manifold the Ricci tensor satisfies

$$
\begin{equation*}
K_{j t} \xi^{t}=2 \eta_{j} \tag{2.3}
\end{equation*}
$$

Differentiating $\phi_{i}^{h} \eta_{h}=0$ covariantly and taking account of (2.1) and (2.2), we obtain

$$
\begin{equation*}
K_{t j i}{ }^{h} \xi^{t} \eta_{h}=g_{j i}-\eta_{j} \eta_{i} \tag{2.4}
\end{equation*}
$$

Transvecting (1.4) with $\xi^{k} \eta_{h}$ and taking account of (2.3) and (2.4), we have

$$
\begin{equation*}
K_{j i}=\left(\frac{K}{2}-1\right) g_{j i}+\left(3-\frac{K}{2}\right) \eta_{j} \eta_{i} \tag{2.5}
\end{equation*}
$$

Substituting (2.5) into (1.4), we obtain

$$
\begin{align*}
K_{k j i}^{h}= & \left(2-\frac{K}{2}\right)\left(g_{k i} \delta_{j}^{h}-g_{j i} \delta_{k}^{h}\right) \tag{2.6}\\
& +\left(\frac{K}{2}-3\right)\left[\left(\eta_{k} \delta_{j}^{h}-\eta_{j} \delta_{k}^{h}\right) \eta_{i}+\left(g_{k i} \eta_{j}-g_{j i} \eta_{k}\right) \xi^{h}\right] .
\end{align*}
$$

Transvecting (2.6) with ξ^{k} and taking account of (2.2), we obtain

$$
\begin{equation*}
\nabla_{j} \phi_{i}^{h}=\delta_{j}^{h} \eta_{i}-g_{j i} \xi^{h} \tag{2.7}
\end{equation*}
$$

which shows that M is a Sasakian manifold.
Thus we have the following
Theorem 2. A 3-dimensional K-contact manifold is a Sasakian manifold.

Remark. S.Tanno also showed the same result in $[12,13]$.

3. 3-dimensional nearly Sasakian manifolds

Let M be a 3 -dimensional nearly Sasakian manifold. Then we have

$$
\begin{equation*}
\nabla_{k} \phi_{j i}+\nabla_{j} \phi_{k i}=-2 g_{k j} \eta_{i}+g_{k i} \eta_{j}+g_{j i} \eta_{k} \tag{3.1}
\end{equation*}
$$

For a nearly Sasakian manifold the vector field ξ^{h} is $\operatorname{Killing}([5])$, that is,

$$
\begin{equation*}
\nabla_{j} \eta_{i}+\nabla_{i} \eta_{j}=0 . \tag{3.2}
\end{equation*}
$$

We define the tensor field $H_{j i}$ by putting

$$
\begin{equation*}
\nabla_{j} \eta_{i}=\phi_{j i}+H_{j i} . \tag{3.3}
\end{equation*}
$$

From the skew-symmetry of $\phi_{j i}$ and (3.2), it follows that $H_{j i}$ is skewsymmetric. Set $H_{j}^{i}=H_{j a} g^{a i}$. Then we have the following equations [10].

$$
\begin{gather*}
H_{j t} \phi_{i}^{t}+H_{i t} \phi_{j}^{t}=0, \tag{3.4}\\
H_{j t} \xi^{t}=0, \tag{3.5}
\end{gather*}
$$

(3.6) $K_{t j i h} \xi^{t}=-\nabla_{j} \phi_{i h}-\nabla_{j} H_{i h}=\left(g_{j i}+H_{j t} H_{i}^{t}\right) \eta^{h}-\left(g_{j h}+H_{j t} H_{h}^{t}\right) \eta_{i}$.

On the other hand, transvecting (1.3) with ϕ_{m}^{k}, we obtain

$$
\begin{equation*}
\left(g_{j i}-\eta_{j} \eta_{i}\right) \phi_{m h}-\left(g_{j h}-\eta_{j} \eta_{h}\right) \phi_{m i}=\left(g_{m j}-\eta_{m} \eta_{j}\right) \phi_{i h} . \tag{3.7}
\end{equation*}
$$

Transvecting (3.7) with H_{l}^{h} and taking account of (3.5), we have

$$
\begin{equation*}
\left(g_{j i}-\eta_{j} \eta_{i}\right) H_{l t} \phi_{m}^{t}-H_{l j} \phi_{m i}=\left(g_{m j}-\eta_{m} \eta_{j}\right) H_{l t} \phi_{i}^{t} \tag{3.8}
\end{equation*}
$$

Taking the symmetric part of (3.8) with respect to l and m and using (3.4), we can find
(3.9) $-H_{l j} \phi_{m i}-H_{m j} \phi_{l i}=\left(g_{m j}-\eta_{m} \eta_{j}\right) H_{l t} \phi_{i}^{t}+\left(g_{l j}-\eta_{l} \eta_{j}\right) H_{m t} \phi_{i}^{t}$.

Transvecting (3.9) with ϕ_{p}^{i} and taking account of (3.5), we obtain

$$
\begin{align*}
& H_{l j}\left(g_{p m}-\eta_{p} \eta_{m}\right)+H_{m j}\left(g_{p l}-\eta_{p} \eta_{l}\right) \tag{3.10}\\
= & H_{l p}\left(g_{j m}-\eta_{j} \eta_{m}\right)+H_{m p}\left(g_{l j}-\eta_{l} \eta_{j}\right) .
\end{align*}
$$

Transvecting (3.10) with $g^{m j}$ and taking account of (3.5) and $H_{t}^{t}=0$, we have $H_{l p}=0$. Hence (3.3) and (3.6) show that

$$
\nabla_{j} \eta_{i}=\phi_{j i}, \nabla_{k} \phi_{j i}=-g_{k j} \eta_{i}+g_{k i} \eta_{j}
$$

Therefore M is a Sasakian manifold. Thus we have
Theorem 3. A 3-dimensional nearly Sasakian manifold is a Sasakian manifold.

4. 3-dimensional nearly cosymplectic manifolds

Suppose that M is a 3 -dimensional nearly cosymplectic manifold. Then ϕ_{j}^{k} is Killig by the definition and it is known ([3]) that the vector field ξ is Killing. Hence we have

$$
\begin{equation*}
\nabla_{i} \phi_{j k}+\nabla_{j} \phi_{i k}=0 \tag{4.1}
\end{equation*}
$$

J.-B. Jun, I.-B. Kim and U.-K. Kim

$$
\begin{equation*}
\nabla_{i} \eta_{j}+\nabla_{j} \eta_{i}=0 . \tag{4.2}
\end{equation*}
$$

Transvecting (4.2) with η^{i}, we have

$$
\begin{equation*}
\left(\nabla_{t} \xi_{j}\right) \eta^{t}=0 \tag{4.3}
\end{equation*}
$$

Transvecting (1.5) with η^{e} and using (4.3), we have

$$
\eta^{t} \nabla_{t} \phi_{i h}=0
$$

which and (4.1) imply

$$
\begin{equation*}
\eta^{t} \nabla_{i} \phi_{h t}=0 . \tag{4.4}
\end{equation*}
$$

Since $\phi_{h t} \eta^{t}=0$, we find

$$
\left(\nabla_{i} \phi_{h t}\right) \eta^{t}+\phi_{h t} \nabla_{i} \eta^{t}=0,
$$

which and (4.4) imply

$$
\begin{equation*}
\left(\nabla_{i} \eta_{t}\right) \phi_{h}^{t}=0 . \tag{4.5}
\end{equation*}
$$

Substituting (4.5) into (1.5), we have

$$
\begin{equation*}
\nabla_{e} \phi_{i h}=0 . \tag{4.6}
\end{equation*}
$$

Transvecting (4.5) with ϕ_{j}^{h}, we have

$$
\nabla_{i} \eta_{j}=0
$$

which and (4.6) show that M is a cosymplectic manifold.
Thus we have
Theorem 4. Every 3-dimensional nearly cosymplectic manifold is a cosymplectic manifold.

5. 3-dimensional quasi cosymplectic manifolds

Let M be a 3 -dimensional quasi cosymplectic manifold. Then we have

$$
\begin{equation*}
\nabla_{k} \phi_{j i}+\phi_{k}^{t} \phi_{j}^{s} \nabla_{t} \phi_{s i}-\eta_{j} \phi_{k}^{t} \nabla_{t} \eta_{i}=0 . \tag{5.1}
\end{equation*}
$$

Transvecting (5.1) with η^{j}, we obtain

$$
\begin{equation*}
\phi_{k}^{t} \nabla_{t} \eta_{i}=\phi_{i}^{t} \nabla_{k} \eta_{t} . \tag{5.2}
\end{equation*}
$$

Transvecting (5.2) with $\eta^{k} \phi_{j}^{i}$, we find

$$
\begin{equation*}
\eta^{s} \nabla_{s} \eta_{j}=0 \tag{5.3}
\end{equation*}
$$

Transvecting (5.2) with ϕ_{j}^{k} and using (5.3), we have

$$
\begin{equation*}
\phi_{j}^{s} \phi_{i}^{t} \nabla_{s} \eta_{t}=-\nabla_{j} \eta_{i} . \tag{5.4}
\end{equation*}
$$

Transvecting (5.1) with η^{k}, we have

$$
\begin{equation*}
\eta^{k} \nabla_{k} \phi_{j i}=0 . \tag{5.5}
\end{equation*}
$$

From (1.3) and (5.4), we have

$$
\left(\Upsilon_{j i} \Upsilon_{s t}-\Upsilon_{s i} \Upsilon_{j t}\right) \nabla^{s} \eta^{t}=-\nabla_{j} \eta_{i}
$$

which and (5.3) imply

$$
\begin{equation*}
\Upsilon_{j i} \nabla_{t} \eta^{t}=\nabla_{i} \eta_{j}-\nabla_{j} \eta_{i} . \tag{5.6}
\end{equation*}
$$

Transvecting (5.6) with $g^{j i}$, we obtain

$$
\begin{equation*}
\nabla_{t} \eta^{t}=0 \tag{5.7}
\end{equation*}
$$

Substituting (5.7) into (5.6), we find

$$
\begin{equation*}
\nabla_{i} \eta_{j}-\nabla_{j} \eta_{i}=0 \tag{5.8}
\end{equation*}
$$

which shows that η is closed.
From (1.5), we have

$$
\begin{equation*}
\phi_{k}^{t} \phi_{j}^{s} \nabla_{t} \phi_{s i}=\phi_{k}^{t}\left(\nabla_{t} \eta_{j}\right) \eta_{i} . \tag{5.9}
\end{equation*}
$$

From (5.1), (5.2), (5.8) and (5.9), we find

$$
\begin{equation*}
\nabla_{k} \phi_{j i}+\phi_{j}^{t}\left(\nabla_{k} \eta_{t}\right) \eta_{i}-\phi_{k}^{t}\left(\nabla_{t} \eta_{i}\right) \eta_{j}=0 . \tag{5.10}
\end{equation*}
$$

By the cyclic sum of (5.10) with respect to the indices k, j and i, we find

$$
\nabla_{k} \phi_{j i}+\nabla_{j} \phi_{i k}+\nabla_{i} \phi_{k j}=0,
$$

which means that the 2 -form $\phi_{j i}$ is closed.
Thus we have the following

Theorem 5. Every 3-dimensional quasi cosymplectic manifold is an almost cosymplectic manifold.

Remark 1. In [8], Z.Olszak constructed almost cosymplectic structures with non-parallel vector field ξ on certain Lie groups in every odd dimension. Hence a 3 -dimensional almost cosymplectic manifold is not cosymplectic in general.

Remark 2. Let M be a 2 -dimensional manifold (surface) which does not have costant curvature 1 and let $T M$ its tangent bundle with the fibre coordinates v^{1}, v^{2}. Then the tangent sphere bundle $\pi: T_{1} M \rightarrow M$ is a hypersurface of $T M$ given by $\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}=1$ and we can find a contact metric structure on $T_{1} M$ which is not Sasakian. (See. Blair [1])

Remark 3. By theorems 2,3,4 and 5, the array of structures in 3-dimensional almost contact metric manifolds is reduced to the following diagram.

References

[1] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in mathematics, Springer-Verlag, Berlin-Heideberg-New York, (1976).
[2] D. E. Blair, The theory of quasi-Sasakian structure, J.Diff.Geom., 1(1967), 331345.
[3] D. E. Blair, Almost contact manifolds with Killing structure tensor, Pacific J. of Math., 39(1971), 285-292.
[4] D. E. Blair, and D. K. Showers, Almost contact manifold with Killing structure tensor II, J. Diff. Geom., 9(1974), 577-582.
[5] D. E. Blair, D. K. Showers and K. Yano, Nearly Sasakian structures, Kodai Math. semi. Rep., 27(1976), 175-180.
[6] M. Capursi, Quasi cosymplectic manifolds, Rev. Roumaine Math. Pures Appl. 32(1987), 1, 27-35.
[7] S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structure, Pacific J.Math., 31(1969), 373-382.
[8] B. H. Kim, Fibred Riemannian spaces with quasi Sasakian structure, Ph.D.Thesis, Hiroshima University, 1990.
[9] Z. Olszak, On almost cosymplectic manifolds, Kodai Math.J., 4(1981),239-250.
[10] Z. Olszak, Nearly Sasakian manifolds, Tensor, N.S., 33(1979),277-286.
[11] S. Sasaki, Almost contact manifolds, Lecture notes, Mathematical institute, Tohoku university, Vol.1, 1965.
[12] S. Tanno, Sur une Variete de K-contact metrigue de dimension 3, C.R.Acad, Sci. Paris, 263(1966), 317-319.
[13] S. Tanno, Killing vectors on contact Riemannian manifolds and fibering related to the Hopf fibrations, Tohoku Math. Journ., 23(1971), 313-333.

Department of Mathematics, College of Education, Kookmin University, Seoul 136-702, Korea.

Department of Mathematics, Hankuk University of Foreign Studies, Seoul 130-791, Korea.

Department of Mathematics, College of Education, Sung Kyun Kwan University, Seoul 110-745, Korea.

[^0]: Received May 10, 1994.

