Extractives from the Needles of Torreya*1

Jin-Kyu Kim*2 · Young-Soo Bae*2

ABSTRACT

The needles of torreya (Torreya nucifera S. et Z) were collected, extracted with acetone-H2O(7:3, v/v), fractionated with hexane, chloroform and ethylacetate, and freeze dried to give some dark brown powder. The ethylacetate soluble mixture was chromato- graphed on a Sephadex LH-20 column using a series of aqueous methanol and ethanol-hexane mixture as eluents. Most of the needle extractives were flavan and its methyl ether compounds such as (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, 3’-O-methyl(+)-catechin and 3’-O-methyl(-)-epicatechin including protocatechuic acid, one of benzoic acids.

Keywords: torreya, needle extractives, Sephadex LH-20, column chromatography, flavan, methyl ether
1. 서 론

오늘날 산업의 발달과 생활수준 향상에 기인한 식품의 고급화 및 편의화 추세에 따라 가공식품의 수요가 급격히 증가하여 이들에 대한 저장 및 유통을 위한 포장재로 가장 많이 사용되는 용이에 대한 추출 및 미생물에 의한 예방이 빈번히 일어나고 있으나 안전성의 문제로 구체화한 결과로는 분명히 건강이 높은 함유 약제의 사용이 금지되고 있는 실정이다. 따라서 최근 화학이 거의 없이 안전성이 높은 친환경 약제의 사용이 금지되고 있으며 이들 중 산림의 주자원인 수목의 추출성분 가운데 반향측 화합물로 구성되는 후보노이드를 과학적으로 분석하고 그 구조를 확인하여 생리활성 및 약리효과 검증에 의한 천연 항균, 항<[tt>중물질로서 식품 포장매</tt>에 적용하고자 하는 연구노력이 활발하다(함 등, 1998). 그러나 약용식물 등의 추출성분을 이용한 기능성 물질, 의약품, 또는 환경농약 등의 개발에 대한 연구 노력에 비해 수목에 관한 것은 상대적으로 미흡한 실정이다.

그러나 건통의학 및 한방에서는 예로부터 수목의 수피, 잎, 또는 열매 등을 중요한 약재로 이용하여 왔으며 최근에는 청소의 일부에 많이 포함되어 있는 효능 성분을 이용한 천연 항균, 항중물질의 개발이 실현되고 있다.

따라서 본 연구에서는 수목 중에 포함된 천연 항균, 항중물질을 탐색하기 위한 시도의 하나로 우리나라 남해안 및 제주도 일대에 자생하고 있으며 이전부터 구중, 말𬘭방지, 치료 및 약이와의 약효공 동제 효과가 기대된 것으로 알려진(이, 1995) 비자나무 잎의 추출성분 분석을 시도하였다.

2. 재료 및 방법

2.1 공시재료

1997년 4월 경상남도 남해군 아동면 난우리에서 자생하는 비자나무(Torreya nucifera S. et Z.) 잎을

체취하여 실험실에서 2주간 기간 후 분쇄기(screen 0.6 cm)를 이용하여 분쇄한 앞 1.5 kg를 공시재료로 사용하였다.

2.2 추출물의 분확

분쇄된 비자나무 잎 1.5 kg를 10ℓ의 유리용기에 넣고 아세톤: 물(7:3, v/v) 혼합용액으로 3일간 첨지하여 추출하였고 충분한 추출용액의 양을 얻기 위하여 상기 과정을 3회 반복한 후 추출용액을 진공회전 농축기를 이용하여 알코올을 모두 증발시켰다. 추출 용액은 분해기를기상에서 먼저 클로로포름용성 화합물을 분리하였으며 다음에 핵산용성, 에릴아세테이트용성, 수용성으로 순차적으로 분확하였다. 각각의 추출물 분획은 농축한 후 동결 건조하여 보관하였으며 추출물의 양은 클로로포름용성 화합물 53.4 g, 수용성 132.5 g, 에릴아세테이트용성 8.4 g, 그리고 4.9 g이었다.

2.3 칼럼크로마토그래피

에릴아세테이트용성 분획물로부터 순수한 단일 화합물을 분리하기 위하여 칼럼 크로마토그래피를 실시하였으며 중간물질로는 Sigma사의 Sephadex LH-20을 사용하였으며 유클루인은 메탄올-물(1:1, 1:2, 1:3, 1:4, 1:5, 2:1, v/v) 및 에탄올-액산(2:1, 2:3, v/v) 혼합액을 사용하였다. 칼럼으로 빨리어진 용액은 fraction collector(Gilson FC 204)를 이용하여 순차적으로 시험관에 받았으며 칼럼이 거의 무색에 가까워지면 아세톤-물(1:1, v/v) 혼합액으로 칼럼을 세척하였다.

2.4 박층크로마토그래피

칼럼크로마토그래피를 수행하여 분리되는 화합물의 정체 여부를 확인하기 위해 박층크로마토그래피(TLC)를 실시하였다. TLC 박판은 Merck사의 DC-Plastikfolien cellulose F(Ar5565)를 사용하였으며, 전개용액은 TBA(t-butanol-acetic acid-water
(3:1:1, v/v, solvent A)와 6% acetic acid(solvent B)를 사용하였다. TLC상에 전개된 화합물은 UV 램프(254 nm, 354 nm)로 관찰하여 화합물을 확인 한 후, vanillin-HCl-EtOH(60:0.15:6) 반응제를 부었고 가열 건조하여 나타나는 색을 관찰하였다.

2.5 추출물의 구조분석

분리된 화합물의 구조분석을 위하여 강원대학교 공동실험실실과의 Bruker DTX 400 MHz NMR과 서울대학교 기초과학 공동연구 기기원의 Bruker Avance 500 MHz NMR기를 이용하였으며 분석용 메탄올-d4와 acetone-d6를 사용하였다.

분리된 화합물의 1H-NMR, 13C-NMR 및 NOE 스펙트럼을 서로 비교 분석하여 구조를 구명하였다. 각 분석을 JEO의 Micromass사의 Autospec M363 결합 분석기의 CI-MS를 이용하여 정확한 분자량을 확인하였다.

2.6 화합물의 단리

에틸아세테이트영성 분획 추출물 8.4 g을 메탄올-ethanol(2:1, v/v) 혼합액으로 칼럼크로마토그래퍼를 실시하여 순차적으로 6개의 fraction(JE-1~JE-6)으로 분리하여 각 분획을 JEO로 명명하였으며 동결건조하 여 얻은 추출물의 양은 JE-1 0.21 g, JE-2 0.54 g, JE-3 1.20 g, JE-4 3.51 g, JE-5 1.60 g, JE-6 1.01 g 이었다. 이후 JE-4에 대한 연속적인 세크로마토그래피를 수행하여 JE-412에서 화합물 1((+)-catechin, 178 mg). JE-41122에서 화합물 2((-)-epicatechin, 132 mg), JE-411231에서 화합물 3((+)-gallocatechn, 21 mg)과 화합물 4((-)-epicatechin, 34 mg). JE-411221에서 화합물 5(3′-O-methyl(-)catechin, 6 mg)과 화합물 6(3′-O-methyl((-)-epicatechin, 12 mg)를 얻었으며 JE-4111에서 메탄 올-ethanol(1:5, v/v)에 1시간 정착시킨 후 얻은 노란색 결정을 정제하여 benzoic acid계(Theander・Lundgren, 1989)의 화합물 7(protocatecheic acid, 41 mg)을 얻었다.

2.6.1 화합물 3

\[R_f : 0.34(Solvant A), 0.36(Solvant B). \]

\[^1H-NMR(400 MHz, \text{H}, \text{solvent-d}_4) : 2.50(1H, dd, J=7.7 Hz, 16.1 Hz, H_α-4), 2.80(1H, dd, J=5.2 Hz, 16.1 Hz, H_α-4), 3.97(1H, m, H-3), 4.53(1H, d, J=7.1 Hz, H-2), 5.86(1H, d, J=1.9 Hz, H-8), 5.92(1H, d, J=2.2 Hz, H-6), 6.40(2H, s, H-2′,6′). \]

\[^13C-NMR(100 MHz, \text{H}, \text{solvent-d}_4) : 28.35(C-4), 69.02(C-3), 83.11(C-2), 95.80(C-8), 96.55(C-6), 101.00(C-10), 107.47(C-2′,6′), 131.83(C-1′), 134.27(C-4′), 147.12(C-3′,5′), 157.09(C-9), 157.86(C-5), 158.07(C-7). \]

2.6.2 화합물 4

\[R_f : 0.30(Solvant A), 0.32(Solvant B). \]

\[^1H-NMR(400 MHz, \text{H}, \text{solvent-d}_4) : 2.70(1H, dd, J=2.7 Hz, 16.7 Hz, H_α-4), 2.86(1H, dd, J=4.4 Hz, 16.6 Hz, H_α-4), 4.16(1H, br s, H-3), 4.75(1H, s, H-2), 5.91(1H, d, J=2.2 Hz, H-8), 5.93(1H, d, J=2.1 Hz, H-6), 6.52(2H, s, H-2′,6′). \]

\[^13C-NMR(100 MHz, \text{H}, \text{solvent-d}_4) : 29.43(C-4), 67.78(C-3), 80.16(C-2), 96.16(C-8), 96.66(C-6), 100.37(C-10), 107.26(C-2′,6′), 131.81(C-1′), 133.87(C-4′), 146.95(C-3′,5′), 157.59(C-9), 157.93(C-5), 158.25(C-7). \]

2.6.3 화합물 5

\[R_f : 0.67(Solvant A), 0.46(Solvant B). \]

\[^1H-NMR(400 MHz, \text{H}, \text{solvent-d}_4) : 2.53(1H, dd, J=8.5 Hz, 16.0 Hz, H_α-4), 2.91(1H, dd, J=5.5 Hz, 16.0 Hz, H_α-4), 3.86(3H, s, OCH_3), 4.02(1H, m, H-3), 4.61(1H, d, J=7.7 Hz, H-2), 5.88(1H, d, J=2.1 Hz, H-6), 5.95(1H, d, J=2.1 Hz, H-8), 6.90(1H, dd, J=1.5 Hz, J=8.1 Hz, H-6′), 6.81(1H, d, J=8.0 Hz, H-5′), 6.99(1H, d, J=1.4 Hz, H-2′). \]

\[^13C-NMR(100 MHz, \text{H}, \text{solvent-d}_4) : 29.01 \]
김진규·배영수

(C-4), 68.89(C-3), 83.08(C-2), 95.52(C-8), 96.40(C-6), 100.97(C-10), 111.91(C-2’), 115.97(C-5’), 121.39(C-6’), 132.09(C-1’), 147.49(C-3’), 148.89(C-4’), 156.98(C-9), 157.60(C-5), 157.90(C-7), 56.40(OCH3).

2.6.4 화합물 6

\[R_{\text{r}} : 0.53 (\text{Solvent A}), 0.32 (\text{Solvent B}). \]
\[^{1}H\text{-NMR}(400 \text{ MHz}, \text{ d, methanol-d}_4) : 2.74(1H, dd, J=2.5 \text{ Hz, 16.8 Hz, Hax-4}), 2.88(1H, dd, J=4.4 \text{ Hz, 16.7 Hz, Hax-4}, 3.86(3H, s, \text{ OCH}_3), 4.18(1H, br s, H-3), 4.60(1H, br s, H-2), 5.93(1H, d, J=2.0 \text{ Hz, H-6}), 5.95(1H, d, J=1.9 \text{ Hz, H-8}), 6.90(1H, dd, J=1.5 \text{ Hz, J=8.1 Hz, H-6’}), 7.12(1H, d, J=1.5 \text{ Hz, H-2’}). \]
\[^{13}C\text{-NMR}(100 \text{ MHz, d, methanol-d}_4) : 80.02(C-2), 67.60(C-3), 29.46(C-4), 158.04(C-5), 96.50(C-6), 157.88(C-7), 95.96(C-8), 157.39(C-9), 100.12(C-10), 132.32(C-1’), 111.87(C-2’), 146.99(C-3’), 148.66(C-4’), 115.72(C-5’), 120.62(C-6’), 56.39(OCH3). \]

2.6.5 화합물 7

\[R_{\text{r}} : 0.71 (\text{Solvent A}), 0.47 (\text{Solvent B}). \]
CI-MS: [M+H]^+ m/z 155.
\[^{1}H\text{-NMR}(400 \text{ MHz, d, acetone-d}_6) : 7.46(1H, dd, J=1.9 \text{ Hz, 8.2 Hz, H-6}), 6.89(1H, d, J=8.29 \text{ Hz, H-5}), 7.52(1H, d, J=1.8 \text{ Hz, H-2}). \]
\[^{13}C\text{-NMR}(100 \text{ MHz, d, acetone-d}_6) : 113.53(C-2), 115.30(C-3), 120.89(C-4), 121.40(C-6), 143.57(C-3), 148.76(C-4), 166.01(\text{acid C}=0). \]

3. 결과 및 고찰

비자나무 잎의 추출물중 에틸아세테이트용성 분획으로부터 7개의 화합물을 단리하여 구조를 결정하였으며 그 중 (+)-catechin과 (-)-epicatechin은 이미

1. \(R_1=\text{OH} : R_2=R_3=R_4=\text{H} \) (+)-Catechin
2. \(R_1=R_2=R_3=\text{OH} : R_4=\text{H} \) (-)-Epicatechin
3. \(R_1=R_2=\text{OH} : R_3=R_4=\text{H} \) (+)-Gallocatechin
4. \(R_1=R_2=R_3=\text{OH} : R_4=\text{H} \) (-)-Epigallocatechin
5. \(R_1=\text{OH} : R_2=R_3=R_4=\text{H} : R_5=\text{CH}_3 \)
6. \(3’\text{-O-methyl} (+)-catechin \)
7. \(3’\text{-O-methyl} (-)-epicatechin \)

7 Protocatechuic acid

여러 연구자에 의해 그 구조가 결정되어 보고된 바 있으며 (+)-gallocatechin과 (-)-epigallocatechin도 기존에 보고된 화합물인지만 국내에서 자생하는 수목의 추출성분에서 드물게 함께 분리된 새로운 화합물이다.
또한 flavan의 methyl ether 화합물도 첨부성 잎의 추출성분으로는 아직 보고되지 않은 물질이다.

3.1 (+)-Gallocatechin(3)과
(-)-Epigallocatechin(4)

JE4(3.51 g)를 MeOH-H2O(1:1, 1:3, 1:4, v/v)혼합액과 EtOH-Hexane(2:1, 2:3, v/v) 혼합액으로 체크로마토그래피를 실시한 후 최종적으로 MeOH-H2O(1:5, v/v) 혼합액으로 체크로마토그래피를 실
시하하여 JE4112313에서 (+)-gallocatechin(21 mg), JE4112312에서 (-)-epigallocatechin(34 mg)을 단거리 하였다. 두 화합물의 R_value 각각 0.34(solvent A) 및 0.36(solvent B)과 0.30(solvent A) 및 0.32(solvent B)였다. 반면히-HCl-EtOH의 발색제에 적 전 및 화색으로 반응하였다.

두 화합물의 구조적 차이는 C-3에 결합한 hydroxyl group의 입체구조 차이가 있을 뿐 아니라는 동일한 구조를 가지고 있어 NMR data가 서로 매우 유사한 유형을 나타내었다. 먼저 (+)-Gallocatechin의 1H-NMR 스펙트럼에서 \(\delta 2.50 \)과 \(\delta 2.80 \)의 두 개의 doublet doublet signal은 각각 axial과 equatorial의 두 개의 H-4의 수소들을 나타내며 \(\delta 3.97 \)에서 나타난 H-3의 signal은 이를 H-2의 수소 및 두 개의 H-4의 수소의 영향으로 multiplet으로 나타났다. 또한, \(\delta 4.53 \)의 H-2는 H-3과의 coupling으로 doublet signal을 나타내었으며 coupling constant(\(J \))가 7.1 Hz로서 두 수소는 서로 trans 구조로 하고 있음을 나타낸다(Drewes·Ilsley, 1969). \(\delta 5.86 \)과 \(\delta 5.92 \)에서 나타난 doublet signal은 각각 A환의 H-8과 H-6으로 coupling 값은 각각 1.9 Hz와 2.2 Hz로서 두 수소가 서로 meta coupling을 하고 있음을 알 수 있다. \(\delta 6.40 \)에서의 signal은 B환의 H-2와 H-6의 signal로 적분값이 두 개의 수소를 나타내고 있어 이들이 서로 대칭 되어있는 pyrogallol 형태임을 나타내었다. \(^{13} \)C-NMR 스펙트럼에서 \(\delta 107.47 \)과 \(\delta 147.12 \)의 signal은 각각 대칭을 이루고 있는 B환의 C-2′/6′와 C-3′/5′를 나타내고 있으며 C-4′는 \(\delta 134.27 \)으로 C-3′와 C-5′에 결합한 hydroxyl group의 입체구조에 기인하여 upfield되어 나타나고 있어 B환은 pyrogallol 형태임을 알 수 있었다. 나머지 signal은 Ohara·Hemmingway(1989), 그리고 Bae 등(1994)이 보고한 (+)-catechin의 정형적인 A환 및 C환의 NMR 값과 일치하여 이 화합물이 (+)-gallocatechin임을 나타내었다. 한편 (-)-Epigallocatechin의 A환과 B환의 \(^{1} \)H-NMR은 화합물 3과 동일한 값을 나타내었으나 \(\delta 4.16 \)과 \(\delta 4.75 \)에서의 두 singlet signal은 각각 C환의 H-3과 H-2를 나타내는 것으로 두 수소가 서로 cis 구조를 가지고 있는 (-)-epicatechin과 동일하였다.

Ham 등, 1997; Kim 등, 1997). \(^{13} \)C-NMR는 화합물 3의 A환 및 B환의 chemical shift와 유사하였으나 C-2에 결합되어 있는 B환과 C-3의 hydroxyl group이 서로 cis 구조를 하고 있어 C-2 및 C-3의 signal이 화합물 3과 비교하여 각각 2.95 ppm과 1.24 ppm upfield 되어 \(\delta 80.16 \)과 \(\delta 67.78 \)에서 나타났으며 Foo 등(1997)이 보고한 data와 동일한 값을 나타내었다. (+)-Gallocatechin과 (-)-epigallocatechin은 축합형 탄환의 기본단위 화합물로서 식물계에 널리 분포되어 있으며 단련체로 존재하기도 하고 (+)-catechin, (-)-epicatechin 등과 함께 dimera trimer 또는 그보다 큰 단위로 결합되어 procyanidin화합물을 구성하고 있다(Peterete, 1991).

3.2 3′-O-methyl-(+) catechin(5)과 3′-O-methyl-(−)-epicatechin(6)

JE-4를 세크로마토그래피를 실시한 후 최종적으로 MeOH-H₂O(1:5, v/v) 혼합액으로 크로마토그래피를 실시하여 JE-411221와 JE-4112213에서 3′-O-methyl- (+)-catechin(6 mg)과 3′-O-methyl-(−)-epicatechin(12 mg)를 단처리하였다. 화합물 5의 R_value는 0.67(solvent A), 0.46(solvent B)이었으며 화합 물6은 0.53(solvent A), 0.32(solvent B)였고 vanillin-HCl-EtOH의 발색제에 모두 적색으로 반응 하였다.

화합물 5와 6의 구조는 각각 (+)-catechin과 (-)-epicatechin의 B환에서 C-3′에 methoxyl group이 결합되어 있는 구조로 \(\delta 3.86 \)에서 methoxyl group의 3개의 수소가 각각 하나의 signal로 각각 나타나 있다. 화합물 5와 6의 \(^{1} \)H-NMR 값은 각각 (+)-catechin과 (-)-epicatechin의 A환 및 C환과 동일한 chemical shift을 보이고 있으나 methoxyl group의 영향에 기인하여 B환의 H-2′ signal은 함 덩(1997)이 보고 한 화합물 1과 2의 signal과 비교하여 화합물 5와 6이 각각 0.19 ppm과 0.12 ppm 정도 downfield 되어 나타났다. \(^{13} \)C-NMR에서 화합물 5의 \(\delta 111.91 \), \(\delta 148.89 \), \(\delta 147.49 \)은 C-2′, C′ 및 4′의 signal로
C-3'에 결합된 methoxyl group의 영향으로 화합물 1과 비교해서 C-2'는 2.49 ppm upfield되었으며 C-3' 및 C-4'는 각각 1.89 ppm과 3.19 ppm 정도 downfield 되어 나타났다. 한편 화합물 6의 13C-NMR 스펙트럼에서 B환의 C-2', C-3' 및 C-4'값은 각각 δ 111.87, δ 148.66, δ 146.99로 화합물 5과 비슷한 값을 나타내었으며 이 동(1997)이 보고한 화합 물 2와 비교하면 C-2'는 2.37 ppm upfield 되었으며 C-3' 및 C-4'는 각각 1.27 ppm과 2.77 ppm 정도 downfield되어 나타났다. 화합물 5와 6의 B환에 결합되어 있는 methoxyl group의 정확한 위치를 확인하기 위해 methoxyl group에 대하여 수행한 NOE 분석에서 화합물 5는 methoxyl group과 인접해서 결합되어 있는 δ 6.99의 H-2' signal이 증가함으로서 H-3'에 methoxyl group이 결합한 구조임을 확인하였으며 화합물 6에서도 δ 7.12에서 나타난 H-2'의 signal이 증가하여 화합물 5와 동일하게 B환의 C-3'에 methoxyl group이 결합되어 있음을 확인하였다. 따라서 화합물 5와 6은 B환의 C-3'에 methoxyl group이 결합된 구조로 Morimoto 등(1985)이 보고 한 NMR data와도 동일한 값을 나타내었다.

한편 Morimoto 등(1985)은 녹나무속 및 쌍작나무 속 수중으로부터 화합물 1, 2, 5, 6을 단리하였으며 Foo 등(1997)은 쌍본류인 lotus pedunculatus에서 화합물 1, 2, 3, 4 등을 단리하여 보고하였으나 비자나무 잎의 경우와 같이 수목의 추출성분에서 catechol 및 pyrogallol 형태의 B환을 지니는 flavan 화합물(Agrawal 등, 1989)이 모두 포함되어 있는 것은 매우 예외적인 현상이다.

3.3 Protocatechuic acid(7)

JE-4111를 MeOH-H$_2$O(1:5, v/v)에서 1시간 정도 정지시킨 후 노란색의 결정자를 따로 분리하여 41 mg의 순수한 protocatechuic acid를 얻었다. Rf값은 0.71(solvent A), 0.47(solvent B)이었고 vanillin-HCl-EtOH 발색체에 반응이 없었다.

1H-NMR 스펙트럼에서 H-6의 signal은 이웃한 H-5와 H-2 두 수소의 영향으로 δ 7.46에서 double doublet으로 나타났으며 coupling 값이 각각 1.9 Hz 및 8.2 Hz로 H-5 수소와는 ortho coupling을 H-2와는 meta coupling을 하고 있으며 δ 6.89의 doublet은 H-5의 signal과 coupling 값이 8.29 Hz로 H-6 수소와 서로 ortho coupling을 하고 있음을 나타낸다. 또한 H-2의 signal은 H-5 수소와 meta coupling되어 δ 7.52에서 doublet으로 나타났으며 coupling 값은 1.8 Hz였다. 이상에서 살펴본 화합물 7의 1H-NMR 값은 catechol 구조의 특정적인 chemical shift를 나타내고 있다. 13C-NMR 스펙트럼에서 δ 166.04에서 carboxyl group의 signal이 나타나고 있으며 hydroxy group이 결합되어 있는 C-3과 C-4의 signal은 각각 δ 143.57과 δ 148.76에서 나타났으며 C-2, C-5 및 C-6은 각각 δ 113.53, δ 115.30과 δ 121.10에서 하나의 signal를 주었으며 carboxylic acid와 결합되어 있는 C-1은 δ 120.89에서 signal을 나타내었다. 이와 같은 NMR 분석 결과는 김(2000)이 보고한 protocatechuic acid의 그것과 정확하게 일치하였으며 이 화합물의 CI-MS 분석결과 분자량이 [M+H]$^+$ m/z 155로 분자량 154와 일치하였다.

4. 결 론

비자나무 잎의 에틸아세테이트용성 분획에 대한 클램브로마토그래프를 수행하여 flavan 화합물인 (+)-catechin, (-)-epicatechin, (+)-gallocatechin 및 (-)-epigallocatechin을 단리하여 그 구조를 결정하였으며 methyl ether 화합물인 3'-O-methyl- (+)-catechin과 3'-O-methyl-(-)-catechin을 분 리하였고 benzoic acid계 화합물인 protocatechuic acid도 단리를하였다.

비자나무 잎 추출성분에 catechol 및 pyrogallol B 환을 가지는 flavan 화합물이 모두 포함되어 있는 것은 매우 이례적인 경우로 수목의 추출성분에서는 아직 보고된 바 없는 특징으로 생각된다.
참고 문헌