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GENERALIZATIONS OF THE NASH EQUILIBRIUM
THEOREM ON GENERALIZED CONVEX SPACES

SEHIE PARK

ABSTRACT. Generalized forms of the von Neumann—Sion type min-
imax theorem, the Fan—Ma intersection theorem, the Fan—-Ma type
analytic alternative, and the Nash—Ma equilibrium theorem hold
for generalized convex spaces without having any linear structure.

1. Introduction

In 1928, John von Neumann found his celebrated minimax theorem
[32] and, in 1937, his intersection lemma [33], which was intended to
establish his minimax theorem and his theorem on optimal balanced
growth paths. In 1941, Kakutani [9] obtained a fixed point theorem,
from which von Neumann’s minimax theorem and intersection lemma
are easily deduced.

In 1951, John Nash [12] established his celebrated equilibrium theo-
rem. In 1952, Fan [4] and Glicksberg {7] extended Kakutani’s theorem
to locally convex Hausdorff topological vector spaces, and Fan gener-
alized the von Neumann intersection lemma by applying his own fixed
point theorem. In 1964, Fan [5] obtained another intersection theorem
for a finite family of sets having convex sections. This was extended, by
Ma [11] in 1969, to infinite families by using Fan’s generalization of the
von Neumann intersection lemma. Ma applied his result to an analytic
formulation of Fan type and to Nash’s theorem for arbitrary families.

Note that all of the above results are extended in our recent works [16,
17, 20-23, 25, 27, 8] in several directions. In fact, those results are mainly
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concerned with convex subsets of (Hausdorff) topological vector spaces
or convex spaces in the sense of Lassonde. Moreover, the author have
developed theory of generalized convex spaces (simply, G-convex spaces)
related to the KKM theory and analytical fixed point theory. In the
framework of G-convex spaces, we obtained several minimax theorems
and the Nash equilibrium theorems in our previous works [20, 21, 25},
based on coincidence theorems or intersection theorems for finite families
of sets.

QOur aim in this paper is to obtain generalized forms of the G-convex
space versions of known results due to von Neumann, Sion, Nash, Fan,
Ma, and others.

In Section 2, we state basic facts on G-convex spaces in our previous
work [18]. Section 3 deals with the Fan-Ma type intersection theorem for
G-convex spaces. In Section 4, we deduce a generalized Fan—-Ma type
analytic alternative and in Section 5, the Nash-Ma type equilibrium
theorem and its consequences.

2. Preliminaries

A generalized convex space or a G-convex space (X, D;T) consists
of a topological space X and a nonempty set D such that, for each
A={ag,a1, - ,an} € {D), there exist a subset T(A)=Tasof X and a
continuous function ¢, : A, — I'(A) such that J C {0,1,--- ,n} implies
da(Ay) C T({a; : j € J}), where (D) denotes the set of all nonempty
finite subsets of D, A, an n-simplex with vertices vg,v1, -+ ,vn, and
Ay = co{v; : j € J} the face of A, corresponding to J.

In case to emphasize X 2 D, (X, D;T") will be denoted by (X = D;T);
and if X = D, then (X;T) := (X, X;T).

There are a large number of examples of G-convex spaces; see [19,
21, 24]. Typical examples are any convex subset of a topological vector
space, convex spaces in the sense of Lassonde, C-spaces {or H-spaces)
due to Horvath, and many others.

For a topological space X and a G-convex space (Y, D;T), a multimap
T : X — Y is called a ®-map provided that there exists a multimap
S : X —o D satisfying

(a) for each x € X, M € (S(z)) implies I'as C T'(x); and
(b) X =U{Int S~ (y) : y € D}, where S~ (y) = {r € X : y € §(z)}.

We need the following selection theorem:
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THEOREM 1 [18]. Let X be a Hausdorff space, (Y, D;T") a G-convex
space, and T : X — Y a $-map.

Then for any nonempty compact subset K of X, we have the follow-
ing:

(i) T|x has a continuous selection f : K — Y such that f(K) CT4
for some A € (D). More precisely, there exist two continuous
functions p: K — A,, and ¢4 : A,, = T4 such that f =¢40p
for some A € (D} with [A|=n+ L.

(i) If g : Y — K is a continuous map, then there exists a yg € Y
such that yo € T(g(yo))-

(iii) f R : K — Y is a multimap such that B~ : ¥ — K has a
continuous selection, then R and T'|x have a coincidence point
zo € K; that is, R(zo) NT{xq) # 0.

(iv) For any compact subset L of X containing K, there exists a
continuous extension f : L — Y of the map f in (i) such that
f(z) € T(x) for each z € L and f(L) C T for some B € (D).

The following is known:

LeMMA. Let {(X;, D;;T;)}ier be a family of G-convex spaces, X =
ier X;, D = Wi Dy, and =; : D — D; the projection for each i € 1.
Define

['(A):= HFi(ﬂ'i(A)) for each A€ (D).
el
Then (X, D;T'} is a G-convex space.

From Theorem 1 and Lemma, we deduced the following collectively
fixed point theorem:

THEOREM 2 [18]. Let {(X;; i) }icr be a family of Hausdorfl compact
G-convex spaces, X = ;1 X;, and foreachi e I, T, : X — X, a ®-
map. Then there exists a point ¢ € X such that x € T'(z) := ;¢ Ti(x);
that is, x; = m;(z) € T;(z) for each i € I.

REMARKS 1. If I is a singleton, X is a convex space, and S; = T3, then
Theorem 3 reduces to the well-known Fan—Browder fixed point theorem;
see Park [15].

2. For the case [ is a singleton, Theorem 3 for a convex space X was
obtained by Ben-El-Mechaiekh et al. [1, Theorem 1| and Simons [28,
Theorem 4.3). This was extended by several authors; see Park [15].
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3. In case when (X;;I';) are all C-spaces, Theorem 2 reduces to Taraf-
dar [31, Theorem 2.3]. This is applied to sets with C-convex sections
[31, Theorem 3.1] and to existence of an equilibrium point of an abstract
economy [31, Theorem 4.1 and Corollary 4.1]. These results can also be
extended to G-convex spaces and we will not repeat here.

For a G-convex space (X D D;I'), a subset ¥ C X is said to be I'-
convez if for each N € (D), N C Y implies I'y C Y; and for any subset
Y ¢ X, the I'-convez hull of Y is defined as follows:

I-coY :=[{Z: Z is a I'-convex subset of X containing Y'}.

It is easily seen that I'-coY = | J{T-coN : N € (Y}}.

For a G-convex space (X DO D;I'), a real function f : X — R is
said to be quasiconcave [resp. quasiconvez| if {z € X : f(z) > r} [resp.
{x € X : f(z) < r}] is I'-convex for each r € R.

Recall that a real function f : X — R, where X is a topological space,
is lower [resp. upper]| semicontinuous (l.s.c.) [resp. us.c] if {zx € X :
f(z) > r} [resp. {x € X : f(x) <r}] is open for each r € R.

Let {X;}icr be a family of sets, and let ¢ € I be fixed. Let

x=1]x; Xx:= ][] X

Jel je\{i}

If #* € X* and j € I\{i}, let 2} denote the jth coordinate of z*. If
zt € X* and x; € X;, let [z*,x;] € X be defined as follows: its ith
coordinate is ; and, for j # ¢ the jth coordinate is z%. Therefore, any
z € X can be expressed as ¢ = [z, z;] for any i € I, where z* denotes
the projection of z in X

ForAcX, zt e X*, and z; € X;, let

A(zY) = {y; € X, : [z%, 5] € A}, A(m) = {v' € X*: [y*,z;] € A}.

3. Intersection theorems for sets with convex sections

In our previous work [20], from a G-convex space version of the Fan—
Browder fixed point theorem, we deduced a Ky Fan type intersection
theorem for n subsets of a cartesian product of n compact G-convex
spaces which are not necessarily Hausdorff. This was applied to obtain a
von Neumann—Sion type minimax theorem and a Nash type equilibrium
theorem for G-convex spaces.
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In the present section, we generalize the above-mentioned intersection
theorem to arbitrary number of subsets. From now on, we assume that
all topological spaces are Hausdorff. This is mainly because of that we
can not get rid of the Hausdorffness in Theorem 2.

The collectively fixed point theorem in Section 2 can be reformulated
to a generalization of various Ky Fan type intersection theorems for sets
with convex sections as follows:

THEOREM 3. Let {(X;;T;)}icr be a family of compact G-convex
spaces and, for each i € I, let A; and B; are subsets of X = [[,.; X;
satisfying the following:

(1) for each z* € X*, @ # T';~co B;(z*) C Ai(z'); and

(2) for each y; € X;, B;(y;) is open in X*.

Then we have [,o; A; # 0.

Proof. We apply Theorem 2 with multimaps S;,7; : X — X; given
by S;(z) := B;(x?) and Ti(z) := A;(z*) for each z € X. Then for each
i € I we have the following:

(a) For each z € X, we have § # T';-co S;(z) C T;(z).

(b) For each ¥; € X;, we have

z € 87 (y;) <= y; € Si(zx) = Bi(z")
— [:r",y@] € B; C Xt x X, =X.

Hence,

S7(y) = {z =[r',z:) € X : 2* € Bi(yy), x; € X;}
= Bi(y:) x X;.

Note that S (y;) is open in X = X' x X, and that T} is a ®-map.
Therefore, by Theorem 2, there exists an T € X such that Z; € 7(Z) =
A;(Z") for all i € I. Hence & = [#%,%;] € ;; 4; # 0. This completes
our proof. a

EXAMPLES. For convex spaces X;, particular forms of Theorem 3
have appeared as follows:

1. Ky Fan [5, Théoréme 1]: I is finite and A; = B; for all i € I.

2. Ky Fan [6, Theorem 1: I = {1,2} and A; = B; forall i € I.

From these results, Ky Fan [6] deduced an analytic formulation, fixed
_point theorems, extension theorems of monotone sets, and extension
theorems for invariant vector subspaces.
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3. Ma [11, Theorem 2}: The case A; = B; for all i € I with a different
proof.

4. Chang [3, Theorem 4.2] first obtained Theorem 3 with a different
proof. She also obtained a noncompact version of Theorem 3 as 3,
Theorem 4.3].

5. Park [22, Theorem 4.2]: X; are convex spaces.

For particular types of G-convex spaces and a finite set I, Theorem
3 was known as follows:

6. Bielawski [2, Proposition (4.12) and Theorem (4.15)]: X; has the
finitely local convexity.

7. Kirk, Sims, and Yuan [10, Theorem 5.2|: X; are hyperconvex
metric spaces.

8. Park [20, Theorem 4], {21, Theorem 19]: I is finite.

4, The Fan type analytic alternative

From the intersection theorem 3, we can deduce the following equiv-
alent form of a generalized Fan type minimax theorem or an analytic
alternative. Our method is based on that of Fan [5, 6] and Ma [11].

THEOREM 4. Let {(X;;T:)}ier be a family of compact G-convex
spaces and, foreachi € I, let fi, 9, : X = X * x X; — R be real functions
satisfying

(1) gi(z) < fi(zx) for each x € X;

(2) for each z* € X*, x; = filz*, z;] Is quasiconcave on X;; and

(3) for each =; € X;, =' — gi[z*,z;] is Ls.c. on Xt
Let {t;}:ic1 be a family of real numbers. Then either

(a) there exist an i € I and an z* € X’ such that

Qi[sci,yq;l <t; forally; € X;; or
(b) there exists an x € X such that

filz) >t; foralliel.

Proof. Suppose that (a) does not hold; that is, for any 7 € I and any
zt € X%, there exists an z; € X; such that g;[z*,z;] > t;. Let

Aii={rc X: fi(x) >t;} and B;:={zre X:gi(z)> 1}



Generalizations of the Nash equilibrium theorem 703

for each i € I. Then

(4) for each z* € X*, @ # B;(2') C Ai(z?);

(5) for each z* € X*, A;(z*) is I';-convex; and

(6) for each y; € X;, B;(y;) is open in X*.
Therefore, by Theorem 3, there exists an = € ();.; A:. This is equivalent
to (b). 0

ExampLES. 1. Ky Fan [5, Théoréme 2; 6, Theorem 3]: X; are
convex spaces, I is finite, and f; = g; for all ¢ € I. From this, Ky Fan
[5, 6] deduced Sion’s minimax theorem [29], the Tychonoff fixed point
theorem, solutions to systems of convex inequalities, extremum problems
for matrices, and a theorem of Hardy-Littlewood—Pdlya.

2. Ma [11, Theorem 3]: X; are convex spaces and f; = g; foralli € I.

3. Park {22, Theorem 8.1]: X, are convex spaces.

REMARKS. 1. We obtained Theorem 4 from Theorem 3. As was
pointed out by Ky Fan [5] for his case, we can deduce Theorem 3 from
Theorem 4 by considering the characteristic functions of the sets A; and
B;.

2. The conclusion of Theorem 4 can be stated as follows: If

min sup gzt z;] >t; forall i€,
TEX g2 X,

then (b) holds; see Fan [5, 6].

5. The Nash type equilibrium theorem

From Theorem 3, we obtain the following generalization of the Nash-
Ma type equilibrium theorems:

THEOREM 5. Let {(X;;1i)}ier be a family of compact G-convex
spaces and, for eachi € I, let f;,¢; : X = X*x X; — R be real functions
such that

(0) gi(z) < fi(z) for each z € X,
(1) for each z* € X*, z; — f;|z*, ;] is quasiconcave on X;

(2) for each z* € X*, z; — g;[z*, x;] Is u.s.c. on X;; and

(3) for each x; € X;, x* v g;]z*,x;] is Ls.c. on X°.
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Then there exists a point & € X such that

fi(#) > max g[#*,4] forallie€ I
i EX;

Proof. For any ¢ > 0, we define

A ;i={z € X: fi(z) > max gl v — €},
i €X;

B.;:={z € X : gi(z) > max gi[z*,y;] — &}
HEX;

for each 7. Then

(1) for each z* € X?, B, ;(z') C Aci(zt);

(2) for each z* € X*, A, ;(z") is T';-convex;

(3) for each z* € X?, B, ;(z;) # 0 since z; ++ g;[z*, ;] is w.s.c. on the
compact space X;; and

(4) for each z; € X;, B ;(z;) is open since z* — g;[z*,z;] is Ls.c. on
Xz'

Therefore, by applying Theorem 3, we have

n Aci #0 forevery e>0.

el
Since X is compact, there exists an & € X such that

fi(%) > max g;[#%,;] forall i€l O
WHEX,
ExaMPLES. 1. In case when X; are convex spaces, f; = ¢;, and [ is
finite, Theorem 5 reduces to Tan et-al [30, Theorem 2.1}.
2. Park {22, Theorem 8.2]: X are convex spaces.

From Theorem 5, we obtain the following generalization of the Nash
equilibrium theorem for G-convex spaces:

THEOREM 6. Let {(X;;T;)}icr be a family of compact G-convex
spaces and, for each i € I, let f; : X — R be a function such that

(1) for each z* € X*, x; — fi[2*,x;] is quasiconcave on Xj;

(2) for each z* € X*, x; — f;[z*,z;] is u.s.c. on X;; and

(3) for each x; € X;, z* — fi[z*, 2] is Ls.c. on X*.



Generalizations of the Nash equilibrium theorem 705

Then there exists a point & € X such that

fil@) = max fil#", 5] forallie I

T T

ExampPLES. For continuous functions f;, a number of particular forms
of Theorem 6 have appeared for convex subsets X; of topological vector
spaces as follows:

1. Nash [12, Theorem 1|: I is finite and X; are subsets of Euclidean
spaces.

2. Nikaido and Isoda [13, Theorem 3.2]: [ is finite.

3. Ky Fan [6, Theorem 4]: I is finite.

4. Ma [11, Theorem 4]: I is arbitrary.

For particular types of G-convex spaces X;, continuous functions f;,
and a finite index set I, particular forms of Theorem 6 have appeared
as follows:

5. Bielawski [2, Theorem (4.16)]: X; have the finitely local convexity.

6. Kirk, Sims, and Yuan [10, Theorem 5.3]: X, are hyperconvex
metric spaces. ' _

7. Park {20, Theorem 6], [21, Theorem 20]: I is finite and f; are
continuous.

The point Z in the conclusion of Theorem 6 is called a Nash equilib-
rium. This concept is a natural extension of the local maxima and the
saddle point as follows.

In case I is a singleton, we obtain the following:

CoOROLLARY 1. Let X be a closed bounded convex subset of a re-
flexive Banach space E and f : X — R a quasiconcave u.s.c. function.
Then f attains its maximum on X; that is, there exists an T € X such
that f(Z)} > f(z) forallz € X.

Proof.” Let E be equipped with the weak topology. Then, by the
Hahn-Banach theorem, f is still u.s.c. because f is quasiconcave, and X
is still closed. Being bounded, X is contained in some closed ball which
is weakly compact. Since any closed subset of a compact set is compact,
so X is (weakly) compact. Now, by Theorem 6 for a singleton I, we
have the conclusion. O

Corollary 1 is due to Mazur and Schauder in 1936. Several generalized
forms of Corollary 1 were known by Park et al. {26, 14].
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For I = {1,2}, Theorem 6 reduces to the following:

COROLLARY 2. Let (X;I') and (Y;I") be compact G-convex spaces
and f: X xY — RU {+cc} a function such that

(1) for each z € X, f(z,-) is Ls.c. and quasiconvex on Y; and
(2) for eachy €Y, f(-,y) Is u.s.c. and quasiconcave on X.

Then

(i) f has a saddle point (zo,y0) € X X Y and
(ii) we have

rznea;;ggnf(x,y) ;r‘lel}r,lrznea%f(w,y).

Proof. Let fi(z,y) := —f(z,y) and fo(z,y) == f(z,y). Then all of
the requirements of Theorem 6 are satisfied. Therefore, by Theorem 6,
there exists a point (zo,y0) € X X Y such that

fl(wo,yo)=gl€a}¥f1($o,y) and fz(ﬂfo,yo):glea}ifz(w,yo)-

Therefore, we have

—fzo,%0) = fr(zo, o)
2 fl(wOsy)
=~ f{zo,y) forallyey,

and
f(l‘oayo) = f2($0,y0)

Z f2($:y0)

= f(z,y0) forallze X.
Hence

flz,y0) < f(zo,y0)
< flxo,y) forall (z,y) € X xY.

Therefore

< < 1 .
Imneﬂxx f (33, yo) <f (iﬂo, yo) = yHEHXIl b (-’Eo, y)
This implies

< <
min mdx /(. y) f (@0, 30) < max min f(z,y).
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On the other hand, we have trivially

min f(z,y) < I;léa}(f(%y)

yEX
and hence
max min f{x < minmax f(zx
max yEXf( ,Y) < min max f(=z,9)
Therefore, we have the conclusion. d

REMARK. A little better results than Corollary 2 were already ob-
tained by the author [20, Theorems 2, 3, and 5] with different proofs.

EXAMPLES 1. von Neumann [32]: X and Y are subsets of Euclidean
spaces and f is continuous in Corollary 2.

2. Sion [29]: X and Y are compact convex subsets in topological
vector spaces (not necessarily Hausdorff) in Corollary 2.
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