Effect of Medium Composition and Volume on Rooting and Growth of Cuttings of *Rosa hybrida* L. 'Red Sandra' and 'Little Marble'

Jong Woon Jeong, **Gyeong Hee Kim**, **Seung Jae Hwang**, **Su Min Park**, and **Byoung Ryong Jeong**

1Department of Horticulture, Division of Applied Life Science, Graduate School, Gyeongsang National University, Jinju 660-701, Korea
2Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 660-701, Korea

Abstract. Experiments were conducted to measure rooting and growth of rose cuttings as affected by medium composition and volume. *Rosa hybrida* 'Red Sandra' and ‘Little Marble’ were used as test plants. For medium composition test, rockwool, phenolic foam, perlite, vermiculite, peatmoss, coir and a commercial medium (Tosilee medium) were applied in single or mixed forms on the propagation bed with fog (200 sec./5 min.) installed to control the humidification time. ‘Red Sandra’ and ‘Little Marble’ cuttings were planted in 16-cell plastic pots and 72-cell plug trays, respectively. For the medium volume test, 72-cell plug trays and 16-cell or 9-cell plastic pots were used. Cuttings with an uniform node with a five-leaflet leaf was soaked in a 500 mg·L⁻¹ IBA solution for 30 sec. A fogging system installed on the propagation bed was used for (100 sec./5 min.). Rockwool 1 : peatmoss 1 (v/v) was the most effective on growth and rooting for both cultivars and high volume of Tosilee medium and rockwool were most effective media for both cultivars.

Key words: peatmoss, perlite, phenolic foam, rockwool, vermiculite

Corresponding author

이러한 사례 중에서도 매우 중요함에도 불구하고, 일반
을 제외한 살백 배지에 관한 선행 연구가 부족하기, 재배농가의 생산비 절감을 위한 대체 배지에 관한 연
구가 부족한 실정이다.

따라서 본 실험에서는 절화 장비의 안정적 변화기술을
개발하고자 ‘Red Sandra’와 ‘Little Marble’ 두
품종의 잼화 장비를 이용하여 발전 배지 및 배지의
부피에 따른 발색 및 성장량 비교하고 살백의 단가
을 낮추기 위한 플리커 트레이와 양면 큐브 등의 유
용한 양액배양 플리커 삽목목 육성기술을 개발하고
자 본 실험을 수행하였다.

재료 및 방법

본 실험은 절화 장비 ‘Red Sandra’와 ‘Little
Marble’ 두 품종의 장비를 사용하여 경상대학교 유리
온실에서 발전 배지의 종류와 부피를 달리하여 삽목하
고 발개 및 성장량 비교하였다. 1999년 8월 1일 살백
상에 가정용 표백제인 타스를 분근하여 소독하고 가습
장치를 점검하였다. ‘Red Sandra’의 삽목 재료는 8월
5일에 원자재의 (주)로스피아 농장에서 양액배양 절
화지를 채취하였다. 깨끗한 물을 분근하고 실습실로 옮
겨 물러린 후 다음날 삽목을 조례하였다. ‘Little
Marble’은 원자재의 (주)김치사 대대본부(상) 장비장
에서 양액배양 절화지의 겉지를 채취하여 ‘Red
Sandra’와 동일한 방법으로 분근하여 다음날 삽목을
조례하여 삽목하였다. 삽목 30일 후에 발근을, 맹아을,
뿌리수, 신초압수, 뿌리길이, 초장, 생장량, 건물중 등
을 조사하였으며 통계분석은 SAS(Statistical Analysis
System v. 6.12, Cary, NC, USA) 프로그램을 사용
하였다.

배지의 종류가 ‘Red Sandra’와 ‘Little Marble’장비의 삽목시 발근 및 성장 비교(실험 1)
배지의 종류에 따라 발근 차이를 알아보기 위하여
10가지 배지(토석이 상토, 암면 큐브, phenolic foam,
perlite, vermiculite, 또는 perlite와 peatmoss 1:1,
perlite와 coir 1:1, perlite와 rockwool(granular) 1:1,
rockwool(granular)과 peatmoss 1:1, rockwool(granular)
과 coir 1:1, v/v)를 준비하여 실험에 이용하였다.
‘Red Sandra’는 16공 연결 포트(주)배지에 그리고
‘Little Marble’은 72공 트레이(주)배지에 각각 배지
를 채워 판수를 충분히 한 후 소입 5매입을 가진 균
일한 1마리의 장미 샘수를 500mg·L⁻¹ IBA 용액에
30초간 점입하여 (주)산안정에서 사용한 가습장치
fog(200sec./min.)가 설치된 반복상에 삽목하고 운전원
의 배치하였다. 오전 9시부터 오후 5시까지 가습하고
삽목 2주 후에는 양쪽면의 개폐기를 이용하여 환기하
였다. 온도관리는 주간의 경우에 차량과 온실 측량
개폐로 30℃를 넘지 않는 수준으로 관리하였으며, 야
간은 18℃ 이상으로 관리하였다. 차량을 위해 차량을
55%의 허용작용을 이용하였으며 판수는 매일 두사간수
하였다.

배지의 부피가 ‘Red Sandra’와 ‘Little Marble’장미의 삽목시 발근 및 성장 비교(실험 2)
발근배지의 부피에 따른 발근 및 생육의 차이를 알
아보기 위하여 3가지의 배지(토석이 상토, 암면큐브,
phenolic foam)를 각각 3가지 부피(3×3×3cm, 5×3×
5cm, 7×7×7cm)로 72공 공정용으로 트레이와 16공
또는 9공 연결 포트에 채워 충분히 판수하였다. 균일
하게 조제된 삽목수 500mg·L⁻¹ IBA에 30초간 점입
하여 삽목하고 fog(100sec./min.)가 설치된 반복상에
실험 1과 동일한 방법으로 관리하였다.

결과 및 고찰
배지의 종류가 ‘Red Sandra’와 ‘Little Marble’장미의 삽목시 발근 및 성장 비교
‘Red Sandra’ 장미는 rockwool(granular)과 peatmoss 1:1(v/v)의 혼합배지에서 초장, 근장, 염수, 신초
무게, 뿌리 무게, 발근율, 맹아율 등이 전체적으로 유
의성을 갖고 양호한 성장을 나타냈다(Table 1). 그러나
phenolic foam의 경우 발근율이 55.5% 마르는 것
으로 보아 삽목배지로서의 사용에는 부적합하다는 것
이 확인되었다. ‘Little Marble’ 장미는 rockwool
(granular)과 peatmoss 1:1(v/v)의 혼합배지에서 초장,
뿌리 길이, 염수, 신초 무게, 뿌리 무게, T/R를, 맹아
율 등이 좋았고, 발근율은 phenolic foam을 제외한
배지의 종류와 부피가 절화 장미 ‘Red Sandra’와 ‘Little Marble’ 삽목시 발근 및 생장에 미치는 영향

| Table 1. Plant height, root length and count, leaf count, fresh and dry weights, % dry matter, T/R ratio, % rooting and % blind bud as affected by medium of cuttings of Rosa hybrida L. ‘Red Sandra’. |
|-----------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Medium (v/v) | Plant height (cm) | Root length (cm) | No. of No. of leafs | Fresh wt. (mg) | Dry wt. (mg) | Dry matter (%) | T/R ratio (%) | Rooting (%) | Blind bud (%) |
| Tosilee | 4.2 | 5.0 | 11.3 | 13.2 | 362 303 | 907 71 33 269 | 24.2 | 2.1 | 83.3 | 13.0 |
| Rockwool | 3.3 | 3.7 | 8.1 | 2.6 | 317 234 | 883 66 23 248 | 24.8 | 2.8 | 83.3 | 13.0 |
| Phenolic foam | 0.3 | 0.1 | 0.5 | 0.4 | 20 3 | 473 4 0 148 | 31.1 | 4.0 | 55.5 | 46.3 |
| Perlite | 3.4 | 4.8 | 10.6 | 2.6 | 315 235 | 1,112 68 24 347 | 26.8 | 2.9 | 79.6 | 20.4 |
| Vermiculite | 0.9 | 2.7 | 21.7 | 0.9 | 67 218 1,283 17 | 23 447 11 | 31.1 | 0.8 | 75.9 | 51.9 |
| Perlite: Peat moss 1 | 1.4 | 4.2 | 14.8 | 2.1 | 122 174 | 926 24 16 294 | 27.4 | 1.5 | 85.2 | 26.0 |
| Perlite: Coir 1 | 4.3 | 4.4 | 7.4 | 2.9 | 373 193 | 1,132 89 31 366 | 28.6 | 3.0 | 81.5 | 26.0 |
| Perlite: Rockwool 1 | 2.6 | 3.9 | 16.4 | 2.4 | 230 290 | 1,105 50 34 372 | 29.1 | 1.6 | 85.2 | 30.0 |
| Rockwool: Coir 1 | 5.5 | 4.5 | 13.4 | 3.7 | 474 346 | 981 13 30 292 | 24.1 | 3.7 | 85.2 | 7.4 |
| Rockwool: Peat moss 1 | 7.3 | 6.3 | 11.0 | 4.1 | 685 501 | 1,128 166 49 346 | 24.3 | 3.5 | 87.0 | 9.3 |
| F-test* | ** | ** | ** | ** | ** | ** | ** | ** | ns | ** |
| LSD 0.05 | 1.6 | 0.7 | 3.5 | 0.8 | 100 808 | 310 30 110 110 | 9.1 | 2.1 | 9.6 | 22.0 |

*ns, *, **, Nonsignificant or significant at P = 0.05 or 0.001, respectively.
**Least significant difference at P = 0.05.

| Table 2. Plant height, root length and count, leaf count, fresh and dry weights, % dry matter, T/R ratio, % rooting and % blind bud as affected by medium of cuttings of Rosa hybrida L. ‘Little Marble’. |
|-----------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Medium (v/v) | Plant height (cm) | Root length (cm) | No. of No. of leafs | Fresh wt. (mg) | Dry wt. (mg) | Dry matter (%) | T/R ratio (%) | Rooting (%) | Blind bud (%) |
| Tosilee | 1.9 | 2.8 | 32.2 | 2.2 | 102 144 | 618 22 20 163 | 23.9 | 1.1 | 100.0 | 29.6 |
| Rockwool | 2.6 | 2.7 | 29.8 | 3.2 | 142 141 | 608 32 15 169 | 24.4 | 2.1 | 100.0 | 9.3 |
| Phenolic foam | 0.1 | 0.3 | 6.3 | 0.5 | 10 14 | 568 12 18 181 | 35.8 | 0.7 | 74.1 | 66.7 |
| Perlite | 0.9 | 3.3 | 23.1 | 1.6 | 54 71 | 599 4 18 187 | 29.0 | 0.2 | 100.0 | 51.9 |
| Vermiculite | 0.7 | 1.0 | 34.2 | 0.5 | 12 74 | 655 3 4 176 | 25.2 | 0.8 | 100.0 | 76.0 |
| Perlite: Peatmoss 1 | 2.6 | 1.7 | 17.3 | 0.3 | 11 45 | 579 3 11 175 | 29.8 | 0.3 | 98.1 | 74.1 |
| Perlite: Coir 1 | 2.6 | 3.7 | 13.4 | 3.1 | 350 100 | 647 37 20 197 | 28.4 | 1.8 | 100.0 | 20.4 |
| Perlite: Rockwool 1 | 1.1 | 2.8 | 32.0 | 1.4 | 60 134 | 581 17 25 170 | 27.3 | 0.7 | 100.0 | 50.0 |
| Rockwool: Coir 1 | 2.6 | 4.0 | 26.0 | 2.4 | 127 129 | 582 35 17 152 | 24.3 | 2.1 | 98.1 | 24.1 |
| Rockwool: Peatmoss 1 | 5.1 | 4.9 | 21.1 | 3.7 | 248 148 | 637 76 20 175 | 26.4 | 3.7 | 98.1 | 0.0 |
| F-test* | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** |
| LSD 0.05 | 0.7 | 0.4 | 4.7 | 0.7 | 40 60 | 90 20 9 20 | 5.4 | 0.8 | 6.9 | 21.4 |

*ns, *, **, Nonsignificant or significant at P = 0.05 or 0.001, respectively.
**Least significant difference at P = 0.05.

모든 처리에서 98.1% 이상이었다(Table 2). 품종에 따라 발근율의 큰 차이는 품종의 특성에 의한 것인가, 아니면 실험 상황에 문제가 있었는지에 대한 해명이 부족하다는 것으로 이에 대한 반복실험 및 구명 연구가 요구된다.

배지의 부피가 ‘Red Sandra’와 ‘Little Marble’ 삽목시 발근 및 생장 비교

두 품종 모두 phenolic foam에서 배지의 용적부피가 무관하게 낮은 발근율을 나타내었다. 그러나 토사와 양면의 처리에서는 배지의 용적부피가 커질수록 모든 생육이 좋았다. ‘Little Marble’ 장미의 경우는 뿌리 부피가 발근율에서는 배지의 용적부피로 손으로 약한 차이에 서도 좋았다(Table 3, 4).
Table 3. Plant height, root length and count, leaf count, fresh and dry weights, % dry matter, T/R ratio, % rooting and % blind bud as affected by medium and medium volume of cuttings of *Rosa hybrida* L. ‘Red Sandra’.

<table>
<thead>
<tr>
<th>Medium (A)</th>
<th>Medium volume (B)</th>
<th>Plant height (cm)</th>
<th>Root length (cm)</th>
<th>No. of roots</th>
<th>No. of leaves</th>
<th>Fresh wt. (mg)</th>
<th>Dry wt. (mg)</th>
<th>Dry matter (%)</th>
<th>T/R ratio</th>
<th>Rooting (%)</th>
<th>Blind bud (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosilee</td>
<td>3 x 3 x 3</td>
<td>0.5</td>
<td>2.3</td>
<td>6.3</td>
<td>1.2</td>
<td>67</td>
<td>61</td>
<td>746</td>
<td>11</td>
<td>5</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>5 x 5 x 5</td>
<td>4.2</td>
<td>5.0</td>
<td>11.3</td>
<td>2.6</td>
<td>362</td>
<td>303</td>
<td>907</td>
<td>84</td>
<td>29</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>7 x 7 x 7</td>
<td>5.1</td>
<td>7.0</td>
<td>12.5</td>
<td>3.1</td>
<td>470</td>
<td>314</td>
<td>1,047</td>
<td>110</td>
<td>36</td>
<td>294</td>
</tr>
<tr>
<td>Rockwool</td>
<td>3 x 3 x 3</td>
<td>0.6</td>
<td>1.1</td>
<td>4.1</td>
<td>1.5</td>
<td>99</td>
<td>31</td>
<td>709</td>
<td>20</td>
<td>3</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>5 x 5 x 5</td>
<td>3.3</td>
<td>3.7</td>
<td>8.1</td>
<td>2.6</td>
<td>317</td>
<td>234</td>
<td>838</td>
<td>71</td>
<td>20</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>7 x 7 x 7</td>
<td>5.1</td>
<td>6.0</td>
<td>8.2</td>
<td>4.9</td>
<td>455</td>
<td>284</td>
<td>1,024</td>
<td>104</td>
<td>30</td>
<td>295</td>
</tr>
<tr>
<td>Phenolic foam</td>
<td>3 x 3 x 3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
<td>20</td>
<td>1</td>
<td>473</td>
<td>4</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>5 x 5 x 5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.4</td>
<td>20</td>
<td>1</td>
<td>473</td>
<td>4</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>7 x 7 x 7</td>
<td>0.2</td>
<td>0.8</td>
<td>0.3</td>
<td>1.6</td>
<td>16</td>
<td>1</td>
<td>450</td>
<td>4</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

F-test:

A	**	**	**	**	**	**	**	**	**	**	**	ns	**	**
B	**	**	**	**	**	ns	**	**	**	**	ns	ns	ns	ns
AxB	**	**	**	**	**	ns	**	ns	**	**	ns	ns	ns	ns

LSD^{0.05}:

| A | 0.7 | 0.4 | 1.2 | 1.0 | 60 | 30 | 110 | 10 | 3 | 50 | 7.9 | - | 7.6 | 7.0 |
| B | 0.7 | 0.4 | 1.2 | 1.0 | 60 | 30 | 110 | 10 | 3 | 40 | 7.9 | - | 7.6 | 7.0 |

¹Nonsignificant or significant at P=0.05 or 0.001, respectively.

²Least significant difference at P=0.05.

Table 4. Plant height, root length and count, leaf count, fresh and dry weights, % dry matter, T/R ratio, % rooting and % blind bud as affected by medium and medium volume of cuttings of *Rosa hybrida* L. ‘Little Marble’.

<table>
<thead>
<tr>
<th>Medium (A)</th>
<th>Medium volume (B)</th>
<th>Plant height (cm)</th>
<th>Root length (cm)</th>
<th>No. of roots</th>
<th>No. of leaves</th>
<th>Fresh wt. (mg)</th>
<th>Dry wt. (mg)</th>
<th>Dry matter (%)</th>
<th>T/R ratio</th>
<th>Rooting (%)</th>
<th>Blind bud (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosilee</td>
<td>3 x 3 x 3</td>
<td>0.8</td>
<td>3.3</td>
<td>28.2</td>
<td>1.6</td>
<td>58</td>
<td>126</td>
<td>535</td>
<td>14</td>
<td>18</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>5 x 5 x 5</td>
<td>0.9</td>
<td>3.8</td>
<td>27.4</td>
<td>1.7</td>
<td>61</td>
<td>110</td>
<td>530</td>
<td>13</td>
<td>20</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>7 x 7 x 7</td>
<td>1.8</td>
<td>3.6</td>
<td>29.6</td>
<td>2.7</td>
<td>123</td>
<td>110</td>
<td>574</td>
<td>22</td>
<td>19</td>
<td>157</td>
</tr>
<tr>
<td>Rockwool</td>
<td>3 x 3 x 3</td>
<td>1.2</td>
<td>2.8</td>
<td>21.1</td>
<td>1.9</td>
<td>69</td>
<td>91</td>
<td>497</td>
<td>16</td>
<td>14</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>5 x 5 x 5</td>
<td>2.5</td>
<td>3.9</td>
<td>22.3</td>
<td>2.9</td>
<td>217</td>
<td>139</td>
<td>577</td>
<td>22</td>
<td>23</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>7 x 7 x 7</td>
<td>4.8</td>
<td>4.5</td>
<td>23.0</td>
<td>4.2</td>
<td>266</td>
<td>144</td>
<td>597</td>
<td>54</td>
<td>19</td>
<td>119</td>
</tr>
<tr>
<td>Phenolic foam</td>
<td>3 x 3 x 3</td>
<td>0.0</td>
<td>0.4</td>
<td>8.9</td>
<td>0.2</td>
<td>6</td>
<td>18</td>
<td>490</td>
<td>1</td>
<td>3</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>5 x 5 x 5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>449</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>7 x 7 x 7</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.7</td>
<td>1</td>
<td>0</td>
<td>496</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

F-test:

A	**	**	**	**	**	**	**	**	ns	**	**	ns	**	**
B	**	**	ns	**	ns									
AxB	**	**	ns	**	ns									

LSD^{0.05}:

| A | 0.4 | 0.3 | 2.4 | 0.3 | 30 | 20 | 50 | 7 | 3 | 30 | 2.5 | 2.1 | 4.5 | 11.8 |
| B | 0.4 | 0.3 | 2.4 | 0.3 | 30 | 20 | 50 | 7 | 3 | 30 | 2.5 | 2.1 | 4.5 | 11.8 |

¹Nonsignificant or significant at P=0.05 or 0.001, respectively.

²Least significant difference at P=0.05.

여서는 rockwool(german)과 peatmoss 1:1(v/v)의 혼합배지가 가장 유의성이 높았으며, 배지의 부피에 따른 발근율과 모든 생육은 배지의 용적이 치실수록 우수한

이상의 결과, 장미 'Red Sandra'와 'Little Marble' 삼육시 주로 이용되어 왔던 일반배지가 아닌 대체배지
의 이용가능성이 확인되었으며, 특히 배지의 종류에 있
배지의 종류와 부피가 절화 장미 'Red Sandra'와 'Little Marble' 삽목시 발근 및 생장에 미치는 영향

결과를 나타냈다.

적 요

본 연구는 배지의 종류 및 부피가 절화 장미의 발근과 발근 후 생육에 미치는 영향을 알아보기 위하여 수행하였다. 실험은 유리온실의 철제 베드에 놓이 1.5m의 아치형 터널을 설치하고 습도유지를 위하여 fog(200sec./5min. or 100sec./5min) 가습하고, 삽목 초기에 차량을 55%의 한량시로 차량하였다. 실험재료는 Rosa hybrida 'Red Sandra'와 'Little Marble' 두 품종을 사용하였다. 배지의 종류에 따른 발근 차이를 알아보기 위하여 10가지 배지(토성, 상토, 알먼크브, fenolic foam, perlite, vermiculite, 또는 perlite와 peatmoss 1:1, perlite와 coir 1:1, perlite와 rockwool 1:1, rockwool과 peatmoss 1:1, rockwool과 coir 1:1, v/v)를 준비하여 삽목하였다. 발근배지의 부피에 따른 발근 및 생육의 차이를 알아보기 위하여 3가지의 배지(토성, 상토, 알먼크브, fenolic foam)를 각각 3가지 부피(3×3×3cm, 5×5×5cm, 7×7×7cm)에 삽목하였다. 배지의 종류를 달리한 실험은 두 품종 모두에서 Rockwool 1: Peatmoss 1 배지에서 발근과 생육에서 가장 좋은 결과가 나타났으며, 배지의 부피에 따른 발근율과 모든 생육은 배지의 용적이 커질수록 높았다.

주제어: 락솔, 비미클라이트, 펠라이트, 패놀륨, 피트모스

인용문헌

10. van den Luga, G. P. Geelen, and P. Schrama. 1990. Rapid out growth of grafted roses is necessary for a good result, grafted plants for rockwool culture must be place in blocks immediately after grafting. Vakblad voor de Bloemisterij 45:34-75.