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ON WEAK ARMENDARIZ RINGS

YounG CHEOL JEON, HonG KEE KiM, YANG LEE, AND JUNG SOOK YOON

ABSTRACT. In the present note we study the properties of weak Armen-
dariz rings, and the connections among weak Armendariz rings, Armen-
dariz rings, reduced rings and IFP rings. We prove that a right Ore ring
R is weak Armendariz if and only if so is @, where @ is the classical
right quotient ring of R. With the help of this result we can show that
a semiprime right Goldie ring R is weak Armendariz if and only if R is
Armendariz if and only if R is reduced if and only if R is IFP if and only
if Q is a finite direct nroduct of division rings, obtaining a simpler proof
of Lee and Wong’s result. In the process we construct a semiprime ring
extension that is infinite dimensional, from given any semiprime ring. We
next find more examples of weak Armendariz rings.

1. Introduction

Throughout this note each ring is associative with identity unless otherwise
stated. Given a ring R, the polynomial ring with an indeterminate x over R is
denoted by R[z]. Due to Rege and Chhawchharia [15], a ring R is called Armen-
dariz if for given f(x) = ap+a 12+ -+a,2™ and g(z) = bo+bix+- - +bpz™ €
Rlz], f(z)g(x) = 0 implies that a;b; = 0 for each 4, j (the converse is obviously
true). Due to Lee and Wong [12], a ring R is called weak Armendariz if for
given f(x) = ao + a1z and g(z) = by + biz € Riz], f(z)g(z) = 0 implies that
a;b; = 0 for each ¢, j (the converse is obviously true). It is obvious that Armen-
dariz rings are weak Armendariz and that subrings of (weak) Armendariz rings
are still (weak) Armendariz. There is a weak Armendariz ring but not Armen-
dariz by [12, Example 3.2]. The structure of (weak) Armendariz rings was also
observed by Anderson and Camillo [2], containing the relations between closely
related rings.
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A ring is called reduced if it has no nonzero nilpotent elements. Reduced rings
are Armendariz by [3, Lemma 1]. A ring is called abelian if every idempotent
is central. Weak Armendariz rings are abelian by [12, Lemma 3.4(3)].

Due to Bell [4], aright (or left) ideal I of a ring R is said to have the insertion-
of-factors-property (simply, IFP) if ab € I implies aRb C I for a,b € R. So
a ting R is called IFP if the zero ideal of R has the IFP. Shin [16] used the
term SI for the IFP, while Narbonne [14] called IFP rings semicommutative.
Simple computations give that reduced rings are IFP and IFP rings are abelian.
Subrings of IFP rings are also IFP obviously. Note that a ring R is IFP if and
only if any right annihilator is an ideal if and only if any left annihilator is an
ideal if and only if ab = 0 implies aRb = 0 for a,b € R [16, Lemma 1.2].

We summarize preliminary facts in the following.

Lemma 1.1. (1) Armendariz rings are weak Armendariz.

(2) The class of (weak) Armendariz rings is closed under subrings and direct
products.

(3) Reduced rings are Armendariz.

(4) Reduced rings are IFP.

(5) IFP rings are abelian.

(6) Weak Armendariz rings are abelian.

Proof. The proofs of (1) and (2) are trivial. The proofs of (3) and (6) are done
by [3, Lemma 1] and [12, Lemma 3.4(3)], respectively.

(4) Let R be a reduced ring and ab = 0 for a,b € R. For any r € R we have
bar = 0 = arb =0 from baba =0 = ba = 0. Thus R is IFP.

(5) Let R be an IFP ring and 0 # ¢ = ¢> € R. Then eR(1 —¢) = 0 =
(1—e)Re. So for each r € R, er(1—e) = 0 = (1 —e)re implies that e is central.
So R is abelian. O

In the following we note that the converses of (1), (3), (4), (5) and (6) need
not hold, and that the classes of (weak) Armendariz rings and IFP rings do
not contain each other.

Example 1.2. (1) Let R = Zs[z,y]/(z%, 2%y?,y>), where Z3 is the Galois field
of order 3, Zs[z,y] is the polynomial ring with two indeterminates x,y over
Zs, and (23, z%y?,y°) is the ideal of Z3[z, y] generated by z3,z%y?,y>. Let R][t]
be the polynomial ring with an indeterminate ¢ over R. Since (T + §t)° =
(Z + 7t)(Z* + 22yt + §2t2) = 0 with 72 # 0, R is not Armendariz. But R is
weak Armendariz by [12, Example 3.2].

(2) Let R be a reduced ring. Then

a b ¢
S = 0 a d)|abecdeR
0 0 a

is IFP and Armendariz by [10, Proposition 1.2] and [9, Proposition 2], respec-
tively.
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(3) Let F be a field and A = FJa, b, c] be the free algebra of polynomials with
zero constant terms in noncommuting indeterminates a, b, c over F. Note that
A is a ring without identity and consider an ideal of F'+ A, say I, generated by
cc,ac and crcfor all 7 € A. Let R = (F'+ A)/I. First notice that R is not IFP
because ac € I but abc ¢ I (hence (a+I)(c+1)=0but (a+I)(b+I)(c+I)#0
in R). However R is an Armendariz ring by the assertion in [7, Example 14].

(4) Commutative rings (hence IFP) need not be weak Armendariz. Ac-
cording to [15, Example 3.2], let Zg be the ring of integers modulo 8 and
R =T(Zs,Zs) be the trivial extension of Zg. Consider the polynomial f(z) =
(4,0) + (4, 1)z over R. The square of f(z) is zero but the product (4,0)(4,1) =
(0,4) is not zero. Thus R is not weak Armendariz.

aai2 a13 ai4
(5) Let S be an abelian ring and R = { { § & @2 Zﬁj) | a,a;; € S}. Then
00 0 a
R is abelian by [6, Lemma 2]. Due to [10, Example 1.3], consider
01 -1 0 0 0 060
00 0 offoo o0 1)_,
00 0 O 000 1)
00 0 O 00 0 0
and
01 -1 0 0 0 00 0 00O 0 0 01
00 0 O 0 010 0 00 1] {0000 £0
0 0 0 O 0 0 0 0 000 1] [0O0O0OO '
0 0 0 O 0 00O 0 0 00 0 00O

Then R is not IFP.
(6) Let R be the abelian ring as in (5). Due to [9, Example 3], consider

0 1 00 01 -1 0
0 0 0 O 0 0 0 O
f@=1o0000|*tloo o ol®
0 0 0 O 00 0 O
0 0 00 0 0 0 O
0 0 0 O 60 0 0 1
9@ =10 0 0 1|Tlo 00 1|°
0 0 0 O 0 0 0 0
0100 0000
in R[z]. Then f(z)g(z) = 0, but <8888) (888{) # 0. So R is not weak
0000 0000

Armendariz.

2. Weak Armendariz rings and related rings

In this section we continue the study of (weak) Armendariz rings, concen-
trating on the conditions under which weak Armendariz rings, Armendariz
rings, reduced rings and IFP rings are equivalent.
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The prime radical of a ring is the set of all strongly nilpotent elements by
[11, Proposition 3.2.1]. A ring is called semiprime if the prime radical is zero.

Lemma 2.1. For a semiprime ring R the following conditions are equivalent:
(1) R is weak Armendariz;
(2) If a,b,c € R is such that ac = 0 = b™ with n > 1, then abc = 0;
(3) If a,b,c € R is such that ac = 0 = b2, then abc = 0.

Proof. (1)=(2) is proved by [12, Lemma 3.9], and (2)=>(3) is trivial. (3)=(1)
is proved by [12, Remark 3.5]. d

If a ring R satisfies the condition (3) in Lemma 2.1, then R is abelian by
[12, Lemma 3.4(3)]. So it is natural to conjecture that abelian semiprime rings
are weak Armendariz. But the answer is negative as we see in the following
arguments.

Denote by Uy, the 2" by 2™ upper triangular matrix ring over a ring S, where
n is a positive integer. Define a ring extension of S, that is a subring of U,

D, ={M € U, | the diagonal entries of M are equal}.

Theorem 2.2. (1) Let S be a semiprime ring. Define a map o : U, — Upyq
by A — (4 9), then U, can be considered as a subring of Upy1 via o (i.e.,
A =o0(A) for AcUy,). Set R be the direct limit of the direct system (Uy,04;)
with 055 = 09~%. Then R is a semiprime ring.
(2) Let S be a semiprime ring. Define a map o : D, — Dy 1 by B —
5 %), then Dy, can be considered as a subring of Dpy1 via o (i.e., B = o(B)
for B € D). Set R be the direct limit of the direct system (Dy,0:;), where
0ij =077%. Then R is a semiprime ring.

Proof. (1) First note R = J;o Uy, via 0 : U, <> Upy1. Let 0 # A € R.
Then A = (as;) € U, for some n. Set ¢ be smallest such that the i-th row of
A contains a nonzero entry, and j be smallest such that a;; # 0 in the i-th
row. Put @ = a;;. Since S is semiprime, there is a non-stationary sequence
(ag,@1,...,ay,...) such that @y = a and Gy = Gy_15y_10y_1 forsome sy,_; € 5,
where y = 1,2,.... Use ey, to denote the square matrix in which (u,v)-entry
is 1 and zero elsewhere.

Suppose that the diagonal of A is nonzero, say a;; = a. In this case we
compute in Uy,. Let Ay = A and A; = Ag(soei;)Ao € AgRAo, then the (,i)-
entry of A; is apspap = a1 # 0. Next let As = A;(s1e;)A; € A;RA;, then
the (4,)-entry of A, is a1s1a1 = az # 0. Proceeding in this manner, we obtain
that the (i,i)-entry of Ay is ax_18p—10xk—1 = ar # O for any k. Thus we
can obtain inductively a non-stationary sequence (Ay) such that Ay = A and
Agy1 € AgRA; for k = 0,1,....

Suppose that the diagonal of A is zero. Then i < j and (i + 2%, j + 2%)-entry
of Ain Ugyqi isalsoa for k =n,n+1,n+2,.... Let Ap = A and A; =
Ao(soBo)Ao € AgRAy, where Ay is considered in R,y and By = €j(it2n) €
Un+1. Say A1 = (bst). Then i is smallest such that the i-th row of A; contains a
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nonzero entry and j+2" is smallest such that b;;;9ny = aosoao = a1 # 0 in the
i-th row. Next let A2 = A1 (SlBl)Al < AlRAl, where B1 = 6(j+2n)(i+2n+1) €
Uni2. Say A = (cs:). Then 1 is smallest such that the i-th row of A5 contains a
nonzero entry and j + 2"+ 2"%! is smallest such that bi(j4anyontty = a18101 =
as # 0 in the é-th row. Proceeding in this manner, we obtain that the (i,7 +
2n 4 ontl 4y 2"+(k_1))—entry of Ay is ag_15p_1a5—1 = agx # 0 for any
k. Thus we can obtain inductively a non-stationary sequence (Ay) such that
Ap = A and Ak—l—l € ArRAg for k = 0,1,....

Therefore A is not strongly nilpotent, concluding that R is semiprime.

(2) The proof is similar to (1). ]

Note that the ring R in Theorem 2.2(2) is infinite dimensional and non-
reduced. With the help of Theorem 2.2 there is a semiprime abelian ring that
is not weak Armendariz.

Example 2.3. Let S be a reduced ring and consider the direct limit R over
S as in Theorem 2.2(2). Then R is semiprime by Theorem 2.2 since reduced
rings are semiprime, but R is not weak Armendariz by the same computation
as in Example 1.2(6).

Reduced rings are abelian by Lemma 1.1, and so every D,, is abelian by [6,
Lemma 2] such that every idempotent in D, is of the form

f 00 --- 0
0 f 0 --- 0
00 f -~ 0
000 - f

with f2 = f € S. Thus R is abelian.

Armendariz rings are weak Armendariz but the converse need not be true
by [12, Example 3.2]. In the remainder of this section we study when weak
Armendarizness and related concepts are equivalent.

A ring R is called von Neumann reqular if for each a € R there exists
x € R such that @ = aza. von Neumann regular rings are semiprime by [5,
Corollary 1.2]. A ring R is called abelian regular if R is von Neumann regular
and abelian. A ring is called right (left) duo if each right (left) ideal is two-sided.
A prime ideal P of a ring R is called completely prime if R/ P is a domain. Our
conditions in this note coincide when given rings are von Neumann regular as
follows. The following extends [2, Theorem 6].

Lemma 2.4. Let R be a von Neumann regular ring. Then the following con-
ditions are equivalent:

(1) R is right (left) duo;

(2) R is reduced,

(3) R is IFP
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(4) R is Armendariz;

(5) R is weak Armendariz

(6) If a,b,c € R is such that ac = 0 = b™ with n > 1, then abc = 0;
(7) If a,b,c € R is such that ac = 0 = b2, then abc = 0;

(8) R is an abelian ring;

(9) R is a subdirect product of division rings.

Proof. (3)=>(9): Let R be IFP. Then the prime radical of R contains all
nilpotent elements by [16, Theorem 1.5]. But von Neumann regular rings are
semiprime by [5, Corollary 1.2], and so each minimal prime ideal of R is com-
pletely prime by [16, Proposition 1.11]. Thus R & R/0 is a subdirect product
of domains, since the prime radical of R is zero. But each factor ring of R is
also von Neumann regular; hence if P is a minimal prime ideal of R, then R/P
must be a division ring, since regular elements of von Neumann regular rings
are invertible.

(9)=(2) is obvious. (2)=(3), (2)=(4), (4)=-(5) and (5)=>(8) are obtained
from Lemma 1.1.

The conditions (1), (2) and (8) are equivalent by [5, Theorem 3.2]. The
conditions (5), (6) and (7) are equivalent by Lemma, 2.1. a

A ring R is called m-regular if for each a € R there exist a positive integer n,
depending on a, and b € R such that a”® = a™ba™. It is easy to show that the
Jacobson radical of a m-regular ring is nil. Since von Neumann regular rings
are m-regular, one may ask if abelian 7-regular rings are (weak) Armendariz,
based on Lemma 2.4. However the answer is negative by the ring R in Example
1.2(5) over a division ring S. In fact R is abelian by [6, Lemma 2], and 7-regular
because each element in R is either invertible or nilpotent; but R is not weak
Armendariz by Example 1.2(6).

Next we observe the classical right quotient rings of weak Armendariz rings,
and as a corollary obtain a situation for which weak Armendariz rings, Armen-
dariz rings, reduced rings and IFP rings are equal.

The Armendarizness can go up to classical right quotient rings by [7, The-
orem 12]. In the following we show that the weak Armendarizness also can go
up to classical right quotient rings.

Theorem 2.5. Let R be a right Ore ring with the classical right quotient ring
Q. Then R is weak Armendariz if and only if so is Q.

Proof. It suffices to show by Lemma 1.1(2) that if R is weak Armendariz
then so is Q. We apply the proof of [7, Theorem 12]. Consider f(z) =
ELO a;zt, g(z) = Z;zo Bz’ € Q[z] such that f(z)g(xz) = 0. By [13, Propo-
sition 2.1.16], we can assume that o; = a;u™',8; = bjv~! with a;,b; € R
for all 4,5 and regular u,v € R. Also, by [13, Proposition 2.1.16], for each
J there exist ¢; € R and regular w € R such that u~'b; = c;w™!. Put
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m(z) = Y,_, asxt, () = Z;ZO cjz! € R[z]. Then we have

0= f(z)g(z) = Zzaiﬂjxiﬂ _ Zzai(u—lbj)v_lxi”

i=0 j=0 i=0 j=0
11
= Z Z aicj(vw) 1z = m(z)é(z)(vw) ™
=0 j=0

hence m(z)é(z) = ,_, E;l'zo a;c; 79 =0 in R[z]. Since R is weak Armen-
dariz, a;c; = 0 for all 4,5 and so o;3; = a;u~tbjv~! = a;c;w™ o™t =0 for all
i,7. Therefore @ is also weak Armendariz. O

As a well-known Goldie’s theorem, R is a semiprime right Goldie ring if and
only if there exists the classical right quotient ring of R which is semisimple
Artinian [13, Theorem 2.3.6]. For a semiprime ring R, notice that R is reduced
if and only if R is IFP. Through the following we can extend [7, Corollary 13].

Theorem 2.6. Suppose that R is a semiprime right Goldie ring with Q its

classical right quotient ring. Then the following conditions are equivalent:
(1) R is a weak Armendariz ring;

2) R is an Armendariz ring

3) R is a reduced ring;

) R is an IFP ring;

) Q is a weak Armendariz ring,

) Q is an Armendariz ring;

} Q is a reduced ring;

) Q is an IFP ring;

) Q is an abelian ring,

(10) Q is a finite direct product of division rings.

Proof. Since @ is semisimple Artinian, Q is von Neumann regular by [5, The-
orem 1.7]. So the conditions (5), (6), (7), (8), (9) and (10) are equivalent by
Lemma 2.4.

(1)=(5) is proved by Theorem 2.5. (2)=(1), (3)=(2) and (3)=-(4) are
obtained from Lemma 1.1. Since R is semiprime, we obtain (4)=(3) and [16,
Theorem 1.5]. (7)=-(3) is obvious. O

By this theorem we can obtain the following Lee and Wong’s result inde-
pendently.

Cofollary 2.7 ([12, Theorem 3.3]). A semiprime right Goldie ring is weak
Armendariz if and only if it is reduced.

From Theorem 2.6, one may conjecture that right Goldie weak Armendariz
rings are Armendariz. But Example 1.2(1) erases the possibility; actually the
ring R in Example 1.2(1) is Noetherian (hence Goldie) and weak Armendariz,
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but it is not Armendariz. Thus the semiprimeness in Theorem 2.6 is not su-
perfluous.
Let S be a ring and denote the ring extension

a @12 aiz - G1n

0 a a3 - agn

0 0 a ©rr G3n |G,,a7;j€S
0 O 0 -+ a

by R,. Then we have another equivalence between weak Armendarizness and
related concepts through Rs.

Proposition 2.8. For a ring S and R3 over S the following conditions are
equivalent:

(1) S is a reduced ring;

(2) Rs is Armendariz;

(3) R3 is weak Armendariz;

(4) Ry is IFP.

Proof. (1)=(2), (2)=>(3) and (1)=>(4) are proved by Lemma 1.1 and Exam-
ple 1.2(2).

(8)=(1): Let R3 be weak Armendariz, and assume on the contrary that
there is a nonzero a € S with a? = 0. Put u = (§§8) and v = (§é§) in

a

Rs. Then u? = 0 = v? and wv = vu # 0; hence Rs is not weak Armendariz
from (u + vz)(u — vz) = 0, where z is an indeterminate over R3. We get a
contradiction.

(4)=(1): Let R3 be IFP, and assume on the contrary that there is a nonzero

a € S with a? = 0. TakeAz(SZIi),B=(82‘1‘)1111?,3. Then AB = 0 but
00 a 00a
a a -1 01 0 a 0 a 0 0 a
0 a -1 0 0 0 0 ¢ 1]=[0 0 0] #0,
0 0 a 0 00 0 0 a 0 00
a contradiction to the IFPness of R3. Thus S is reduced. O

Based on Proposition 2.8, one may ask whether R, is also (weak) Armen-
dariz and IFP for n > 4 when S is a reduced ring. However the answer is
negative by Example 1.2 (5, 6).

A ring is called semiprimitive if the Jacobson radical is zero. Given a ring R,
R[X] denotes the polynomial ring with X a set of commuting indeterminates
over R (possibly infinite).

Proposition 2.9. If a ring R is semiprime weak Armendariz, then R[X] is
semiprimitive.
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Proof. By [12, Theorem 3.10] R has no nonzero nil one-sided ideals since R is
semiprime weak Armendariz. So by Amitsur [1], R[X] is semiprimitive. d

The condition “semiprime” is not superfluous as can be seen by R,, (2 <

n > 3) over a reduced ring S, e.g., Rs is Armendariz by [9, Proposition 2] but

the Jacobson radical of R[X] contains N[X] with N = <§ § %)

A proper ideal I of a ring is called (weak) Armendariz if I is (weak) Armen-
dariz as a ring without identity. It is natural to ask whether given a ring R is
(weak) Armendariz when R/ and I are (weak) Armendariz for any nonzero
proper ideal I of R. However the answer is negative by [9, Example 14] and
Lemma 1.1(6), letting R be the 2 by 2 upper triangular matrix ring over a field.
But when I is reduced as a ring then it is proved by [7, Theorem 11] that R is
Armendariz when R/I is Armendariz. We show that this result also holds for
weak Armendariz rings in the following.

Proposition 2.10. Let R be a ring such that R/I is weak Armendariz for
some proper ideal I of R. If I is reduced, then R is weak Armendariz.

Proof. Let a,b € R. If ab = 0, then bla = 0 by the proof of [7, Theorem 11]. We
use this fact freely. Put f(z)g(z) = 0 for f(z) = Zg:o a;z’, g(z) = Z;ZO bjzl €
Rlz]. Then we have bglag = 0. Since R/I is weak Armendariz, a;b; € I for
all 4, 7. It suffices to show apb; = 0 = a1bg. Assume on the contrary agb; # 0.
Then (albo)(aobl)Z = al(boaoblao)bl = 0 from bglag = 0 and agb; € I; hence
we have 0 = f(x)g(x)(a0b1)2 = (a0b1 + albo)x(a0b1)2 = (aobl)(aobl)Zl‘ and
(aob1)® = 0. But I is reduced and so agh; = 0, a contradiction. Thus R is
weak Armendariz. O

Applying the method in the proof of [7, Proposition 10], we obtain the
following.

Proposition 2.11. For an abelian ring R, the following conditions are equi-
valent:

(1) R is weak Armendariz;
(2) eR and (1 — e)R are weak Armendariz for every e = e € R;
(3) eR and (1 — e)R are weak Armendariz for some e = €* € R.

Note that the preceding result also holds for Armendariz rings by [7, Propo-
sition 10].
3. More examples of weak Armendariz rings

In this section we extend the class of weak Armendariz rings.

Proposition 3.1. Let R be a ring and A be a multiplicative monoid in R
consisting of central reqular elements. Then R is (weak) Armendariz if and
only if so is A™'R,
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Proof. Let R be Armendariz and S = A™'R. Put f(z)g(x) = 0 where f(z) =
Yo', g(x) = Y7o Bia? € S[z]. We can assume that o; = au™,f; =
bjv~! with a;,b; € R for all i, j and u,v € A. Then we have

0= F@o@) = 33 by = 303 aubulo e

=0 §=0 =0 j=0
m n
= (DD aibja ) (wv) ™
=0 j=0

hence 377, 377 aibjz™t = 0 in Rlz]. Since R is Armendariz, a;b; = 0 for
all 4,7 and so ;8; = a;u~lhjv~! = g;bju~'v™! = 0 for all i,j. Thus S is
Armendariz. The converse is obtained by Lemma 1.1(2). The proof for weak
Armendariz rings is similar. [l

The ring of Laurent polynomials in z, coefficients in a ring R, consists of
all formal sums . , m;z’ with obvious addition and multiplication, where
m; € R and k,n are (possibly negative) integers; denotes it by R[z;z}].

~ Corollary 3.2. (1) A commutative ring R is (weak) Armendariz if and only
if so is the total quotient ring of R.
(2) Let R be a ring. R[z) is (weak) Armendariz if and only if so is R[z;z71].

Proof. 1t suffices to show the necessity by Lemma 1.1(2). (1) Let A be the
multiplicative monoid of all regular elements in R. Then A™!R is the total
quotient ring of R and hence the result holds by Proposition 3.1.

(2) Let A = {1,z,22%,...}. Then A is a multiplicative monoid in R]z]
consisting of central regular elements. Note that R[z;z71] = A~ R[z]. If R[z]
is (weak) Armendariz, so is A1 R[z| by Proposition 3.1. |

Due to Kaplansky [8], a ring is called Baer if the right annihilator of every
nonempty subset is generated by an idempotent. The concept of Baer rings
is left-right symmetric by [8, Theorem 3]. The class of Baer rings contain
domains, the ring of all linear transformations on a vector space over a division
ring, and the ring of all bounded operators on a Hilbert space.

From Example 1.2(1), homomorphic images of Armendariz rings (moreover
domains) need not be Armendariz. For weak Armendariz rings we also get a
negative situation as in the following.

Example 3.3. Let R = Z|[z,y]/(z2,y?), where Z, is the Galois field of order
2, Zy|z,y] is the polynomial ring with two indeterminates z,y over Zz, and
(2%, y?) is the ideal of Zs[z,y] generated by z2,y2. Let R[t] be the polynomial
ring with an indeterminate ¢ over R. Since (¥ + §£)? = 0 and 7 # 0, R is not
weak Armendariz.

But [12, Lemma 3.6} showed that a factor ring of R by a left (or right)
annihilator of an ideal is (weak) Armendariz, where R is a (weak) Armendariz
ring. Thereby we have the following.
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Proposition 3.4. (1) If a ring R is IFP and (weak) Armendariz, then R/A is
(weak) Armendariz for the one-sided annihilator A of every nonempty subset
in R.

(2) If a ring R is Baer and (weak) Armendariz, then R/A is (weak) Armen-
dariz for the one-sided annihilator A of every nonempty subset in R.

Proof. (1) Any one-sided annihilator in an IFP ring is two-sided by [16, Lemma
1.2], and so the result holds by [12, Lemma 3.6].

(2) Let R be a Baer and (weak) Armendariz ring. Then R is abelian by
Lemma 1.1(6), and so the one-sided annihilator A of every nonempty subset in
R is two-sided. Thus we have the result by [12, Lemma 3.6]. O

We end this note with raising following questions:

(1) If R is a weak Armendariz ring then is R[z] weak Armendariz?
(2) Are semiprime weak Armendariz rings Armendariz?
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