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TRAVELING WAVE SOLUTIONS FOR HIGHER
DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS
USING THE (%)— EXPANSION METHOD

E. M. E. ZAYED

ABSTRACT. In the present paper, we construct the traveling wave solutions
involving parameters of nonlinear evolution equations in the mathematical
physics via the (341)- dimensional potential- YTSF equation, the (3+1)-
dimensional generalized shallow water equation, the (3+1)- dimensional
Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-
Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa

equation by using a simple method which is called the (%)— expansion

method, where G = G(&) satisfies a second order linear ordinary differential
equation. When the parameters are taken special values, the solitary waves
are derived from the travelling waves. The travelling wave solutions are
expressed by hyperbolic, trigonometric and rational functions.
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1. Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated
by many authors( see for example [1-47] } who are interested in nonlinear phys-
ical phenomena. Many powerful methods have been presented by those authors
such as the inverse scattering transform [3], the Backlund transform [14,15],
the generalized Riccati equation [17,28], the Jacobi elliptic function expansion
[7,12,25,27,29,33,36], the extended tanh- function method [1,8,34,35,44], the F-
expansion method [2,18-20], the exp-function expansion method [6,9,30,42,43],
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the sub- ODE method [13,21], the extended sinh-cosh and sine-cosine meth-
ods [22], the complex hyperbolic function method [37], the truncated Painleve
expansion [40] and so on.

In the present paper, we shall use a simple method which is called the
(%)—expansion method [5,24,38,39,46,47]. This method is firstly proposed by
the Chinese Mathematicians Wang et al [24] for which the traveling wave so-
lutions of nonlinear equations are obtained. The main idea of this method is
that the traveling wave solutions of nonlinear equations can be expressed by a
polynomial in (%),where G = G() satisfies the second order linear ordinary
differential equation G (£) + AG'(€) + uG(€) =0, where E =z +y+2z-Vt
while A\, 4 and V are constants. The degree of this polynomial can be de-
termined by considering the homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in the given nonlinear equations.
The coefficients of this polynomial can be obtained by solving a set of algebraic
equations resulted from the process of using the proposed method . This new
method will play an important role in expressing the traveling wave solutions
for nonlinear evolution equations via the (3+1)- dimensional potential- YTSF
equation, the (341)- dimensional generalized shallow water equation, the (3+1)-
dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified
KdV- Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa
equation in terms of hyperbolic, trigonometric and rational functions.

2. Description of the ( %)-expansion method

Suppose we have the following nonlinear partial differential equation:
P(u, Uty Uz, Uy, Uz, Utty Uty U, Yoy, Uyy,; Uyts Uzz, Uzt Yza, Uzy, -o--- ) =0, (21)

where u = u(z,y, z,t) is an unknown function, P is a polynomial in u(z, y, 2, )
and its partial derivatives in which the highest order derivatives and the non-
linear terms are involved. In the following we give the main steps [24] of the

(-g—)—expansion method:
Step 1. The traveling wave variable

u(z,y, z,t) = u(f) , E=z+y+2-Vt, (2.2)

where V' is a constant, permits us reducing Eq. (2.1) to an ODE for u = u(¢)
in the form
Pu,u',u" u",...)=0. (2.3)

Stgp 2. Suppose the solution of Eq(2.3) can be expressed by a polynomial

in (§) as follows:

u(€) = ga (g—) (2.4)
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where G' = G(€) satisfies the following second order linear ordinary differential
equation:

G+ MG + uG =0, (2.5)
where «;,V,A and u are constants to be determined later provided o, # 0. The
positive integer "n” can be determined by considering the homogeneous balance
between the highest order derivatives and the nonlinear terms appearing in Eq
(2.3).

Step 3. Substituting (2.4) into (2.3) and using Eq (2.5), collecting all terms
with the same power of (%) together and then equating each coefficient of the
resulted polynomial to zero, yields a set of algebraic equations for ay, V, A and
[E8

Step 4. Since the general solution of Eq (2.5) has been well known for us,
then substituting «;, V and the general solution of Eq (2.5) into (2.4) we have
more traveling wave solutions of the nonlinear partial differential equation (2.1).

3. Some applications

In this section, we apply the ((G—;—) - expansion method to construct the travel-
ing wave solutions for the (3+41)- dimensional potential- YTSF equation, the
(3+1)- dimensional generalized shallow water equation, the (3+1)- dimen-
sional Kadomtsev- Petviashvili equation, the (3-+1)- dimensional modified KdV-
Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equa-
tion which are very important nonlinear evolution equations in the mathematical
physics and have been paid attention by many researchers.

3.1. Example 1. The (3+1)- dimensional potential- YTSF equation.
We start with the (3+1)- dimensional potential- YTSF equation [4,32] in the
form

—AUgy + Upggr + Augliys + 2Ugrpu, + 3uyy = 0. (31)
The (3+1)- dimensional evolution equation (3.1) was recently derived by Yu
et al [32]. This equation was called the potential- YTSF equation and it was
developed by using the strong symmetry. Let us now solve the system (3.1) by

(%)— expansion method. To this end, we see that the following traveling wave

variable
ulz,y,z,8) =u(f), E=zx+y+2z~Vi, (3.2
where V is a constant, permits us converting (3.1) into the following ODE:

C —4Vu' +u" 4+ 3u? + 3u' =0, (3.3)
where ¢/ is an integration constant. Suppose that the solutions of ODE (3.3)
can be expressed by a polynomial in (%) as follows:

u©) =3 o (g) (3.4)

1=0
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where «; are arbitrary constants, while G(£) satisfies the second order linear
ODE (2.5).

Considering the homogeneous balance between the highest order derivative
and the nonlinear term in (3.3), we deduce that n = 1. Thus, we get

uw§) = o1 (g) + ay, (3.5)

where o and a; are constants provided a; # 0. Substituting (3.5) into (3.3)
along with (2.5), collecting all terms with the same powers of <%) and setting
them to zero. Consequently, we have the following system of algebraic equations:

arA[4V — (A% +8p) + 6aip— 3] = 0,

o [4V — (TA? 4 8p) + 301 0% + 6o — 3] = 0,
~120A + 602X = 0,

—6a;+302 = 0

C+4a1pV — poy (W 4 2u) + 302u? —3aqp = 0

3

i

which can be solved, to get
ap =2, = %(’\2—4’”3)’ C=0. (3.6)

Substituting (3.6) into (3.5) yields

u(§) =2 (g-) + o, (3.7)
where
§=m+y+z—£()\2—4u+3). (3.8)
Solving Eq. (2.5), we deduce for A2 — 4y > 0 that

G _1 e —an Acosh($1/X? —4p £) + Bsinh(3/X% —4dp €\ 57
G2 Asinh(3/X2 —4p &) + Beosh(3/A2 —4p € 2

(3.9)

where A and B are arbitrary constants.

Substituting (3.9) into (3.7) we deduce the following three types of traveling
wave solutions:

Case 1. If A2 —4yu > 0, then we have

Acosh(54/A2 —4p &) + Bsinh %\/ —4p £
=/ -
uld) X <Asmh( LVA2 —4p €) + Beosh(3/ X2 —4p &) o4

(3.10)
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Case 2 . If A% — 4y < 0, then we have

—Asin(1+/4 A2 B cos(%
o) = v (v 2O By 20,

Acos(3+/4p — A? €) + Bsin(3/4p

(3.11)
Case 3. If A2 —4u =0, then we have
we) =2{—2 ) tag-» (3.12)
= A+ B f [674] . .

In particular, if A=0,B # 0, A > 0, u = 0, then we deduce from (3.10) that

u(f) = /\tanh(%f) +ag — A, (3.13)

which represents the solitary wave solutions of the (3+1)- dimensional potential-
YTSF equation (3.1) .

3.2. Example 2. The (341)- dimensional generalized shallow water
equation. In this subsection, we study the following (3+1)- dimensional gener-
alized shallow water equation [16]:

Uzzoy — SUzzly — SUgUzy + Uyt — =0. (3.14)

Let us now solve Eq. (3.14) by the proposed method. To this end, we see that

the traveling wave variable (3.2) permits us converting (3.14) into the following
ODE:

CH+u" —3u? — (V4 1)u' =0, (3.15)

where C' is a constant of integration. Considering the homogeneous balance
between highest order derivative and nonlinear term in (3.15), we get

uw(§) = (%) + ag. (3.16)

Substituting (3.16) into (3.15) along with (2.5), collecting all terms with the same
powers of % and setting them to zero. Consequently, we have the following
system of algebraic equations:

AV — (A +8u) —6agpu+1] = 0,

[V = (TN +8u) — 3o (M +2u) +1] = 0,
1200+ 602X = 0,

6aq + 3&% = {,

0

CH+ oy pV — poy (A + 2p) = 3a3p* +oaqp =

which can be solved, to get

ar=-2, V=MN—-4u—-1, C=0, (3.17)
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Substituting (3.17) into (3.16 ) yields

u(§) =-2 (g) + ag, (3.18)

where § = 2 +y+ 2 —1(A\* =45 —1). On substituting (3.9) into (3.18), we deduce
the following three types of traveling wave solutions:
Case 1. If A2 —4y > 0, then we have

u(§)
CaEm Acosh(3/X2 — 4y ¢€) + Bsinh(§/A% — 4 bt A
Asinh(3/X2 — 4y £) + Bcosh(L,/)? 4p

=

(3.19)
Case 2 . If A2 —4u < 0, then we have

—Asin(3/4u — N €) + Becos 3V =X ¢)
_ —z (5 (3 A,
u(©) (e = 2) ( Acos(3+/4n— X2 €) + Bsin(3/4u - X2 ¢) e

(3.20)
Case 3 . If A2 — 4y =0, then we have

B
u) =225

In particular, if A=0,B #0, A > 0, 1 = 0, then we deduce from (3.19) that

)—l—a0+)\, (3.21)

u(é) =-A tanh(%ﬁ) +ag+ A, (3.22)

which represents the solitary wave solutions of the (3+1)- dimensional general-
ized shallow water equation (3.14).

3.3. Example 3. The (3+1)- dimensional Kadomtsev- Petviashvili
equation. In this subsection, we consider the (341)- dimensional Kadomtsev-
Petviashvili equation [11,42,45 ] in the form:

Uzt + 6(uz)? + 6Ulzy — Upzzy — Uyy — Uzy =0, (3.23)

which describes the dynamics of solitons and nonlinear wave in plasmas and
superfluids. Let us now solve this equation by the proposed method. To this
end, we see that the traveling wave variable (3.2) permits us converting (3.23)
into the following ODE :

~Vu+3u? —u" - 2u=0, (3.24)

where the constants of integrations are assumed to be zero. Considering the
homogeneous balance between highest order derivative and nonlinear term in

(3.24), we get
u(§) = a2 (g>2 + (g) + ao, (3.25)



Traveling wave solutions for higher dimensional nonlincar evolution equations 389

where a; (i = 0,1,2) are constants provided ay # 0. Substituting (3.25) into
(3.24) along with (2.5), collecting all terms with the same powers of ( ) and

setting them to zero. Consequently, we have the following system of algebraic
equations:

—a1V + 6agar — (6aodp + 2004+ a1 M%) — 20, = 0,
—aoV + 3(af + 20900) — (8o + 31\ + 40o)?) =209 = 0,
baraz — (201 + 10a2)) = 0,
—6as +3a3 = 0,
—agV — 2a2u2 + 3043 —oAp—2ay = 0,
which can be solved, to get
az =2, a1=2)\ V =6ay— A\ —8u—2, (3.26)
Substituting (3.26) into (3.25 ) yields
2 .
u(§) =2 (g) + 2\ <%) + ayg, (3.27)

where { =z +y + 2 — t(6cg — A* — 84 — 2). On substituting (3.9) into (3.27),
we deduce the following three types of traveling wave solutions:
Case 1. If A2 —4y > 0, then we have

Case 2 . If A\? — 4 < 0, then we have
u(¢)

1 oy [ —Asin(3\/4p — A2 €) + Bcos (34— A2 ¢) A2
=5 dp - X% + oo

2 mmiM@—V§+BﬂWMM—V@ S 2

(3.29)
Case 3 . If A2 — 4 = 0, then we have
B \? z2

=2{ —— - —, 3.30
w) =2 (i) +aa-3 (3.30)

In particular, if A=0,B # 0, A > 0, = 0, then we deduce from (3.28) that

A2 A

u(f) = -5 sech2(§£) + o, (3.31)

which represents the solitary wave solutions of the (3+1)- dimensional Kadomtsev-
Petviashvili equation(3.23).
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3.4. Example 4. The (3+1)- dimensional modified KdV- Zakharov-
Kuznetsev equation. In this subsection, we consider the (3+1)- dimensional
modified KdV- Zakharov- Kuznetsev equation [27] in the form:

ur + ouluy + Ugpr + Ugyy + Ugzz = 0, (3.32)

where « is a nonzero constant. Xu [27] has discussed Eq. (3.32) using an elliptic
equation method and found new types of elliptic function solutions. Let us
now solve this equation by the proposed method. To this end, we see that the
traveling wave variable (3.2) permits us converting (3.32) into the following ODE

C—-Vu+ %mﬁ +3u" =0, (3.33)

where C' is a constant of integration. Considering the homogeneous balance
between highest order derivative and nonlinear term in (3.33), we get

ug) = (g) + ag. (3.34)

Substituting (3.34) into (3.33) along with (2.5), collecting all terms with the same

powers of % and setting them to zero. Consequently, we have the following
system of algebraic equations:

-V + aala(z) + 3a1()\2 +2u) = 0,
aaoaf +9a1A = 0,
%aa:{’ +6a; = 0,
C— oV + %aa% +3ura; = 0,
which can be solved, to get
o) =+ 6 om:iﬂ V= 3)\2+6u, C =0, (3.35)

V2a’ V2a’ 2
Substituting (3.35) into (3.34 ) yields

61 G 3 i
ull) =t—1| = | £t —, 3.36
© =+ (5) =22 (3.36)
where £ =z + y + 2z + 2t(A\? — 4). On substituting (3.9) into (3.36), we deduce
the following three types of traveling wave solutions:

Case 1. If A2 —4u > 0, then we have
u(é)

=+37

(A2 —4p) [ Acosh(3/X2 —4p &)+ Bsinh(1/A2 —4p €)
2ax Asinh(3/232 —4p €)+ Beosh(3v/A2 —4dp €)'

(3.37)
Case 2 . If A2 — 4 <0, then we have
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13 /(4/,e A2) [ —Asin(L (3v4r — A2 &) + B cos( %\/4
= T y
Acos(3/4p — X2 &) + Bsin(3/4p 5

(3.38)

Case 3 . If \? — 4y = 0, then we have

6i B
u(€) = o (W) , (3.39)

In particular, if A=0,B #£0, A > 0, u = 0, then we deduce from (3.37) that
3iA
V2«

which represents the solitary wave solutions of the (3+1)- dimensional modified
KdV- Zakharov- Kuznetsev equation(3.32).

u(l) == tanh(%i), (3.40)

3.5. Example 5. The (341)- dimensional Jimbo-Miwa equation. In this

subsection, we consider the(3+1)- dimensional Jimbo-Miwa equation [10,23] in
the form:

Uzzzy + SUylazz + FUaUsy + 2Uys — Uy, = 0. (3.41)

This equation is firstly investigated by Jimbo-Miwa and its certain soliton solu-
tions are obtained in [10] . Then its studied on many manifolds by several au-
thors regarding its solutions, symmetries and integrability properties. Wazwaz
[25,26] successfully studied one- soliton solution to equation (3.41) by means of
the tanh-coth method. He also employed the Hirota’s bilinear method to this
equation and confirmed that it is completely integrable and it admits multiple
- soliton solutions of any order. Let us now solve this equation by the proposed
method. To this end, we see that the traveling wave variable (3.2) permits us
converting (3.41) into the following ODE :

CH+u" +3u? — 2V + 3)u' =0, (3.42)

where C' is a constant of integration. Considering the homogeneous balance
between highest order derivative and nonlinear term in (3.42), we get

w() =ax (g) + ag. (3.43)

Substituting (3.43) into (3.42) along with (2.5), collecting all terms with the

same powers of %) and setting them to zero. Consequently, we have the
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following system of algebraic equations:

—a1A(A? 4 8u) + 603 Ay + 2V Aar +3hay =
—a1(TA% 4 8u) + 3a2( N + 2u) + 2V + 304
—1201 A + 63\

—6a; + 307

C + 2014V — pay (N 4 2u) + 3a3u® + 3 =

[
== =R = =)

which can be solved, to get
m=2 Ve=iW-4u-3), C=0 (3.44)

Substituting (3.44) into (3.43 ) yields

u(€) =2 (g) + ao, (3.45)

where ¢ = 2+ y + z — 3(A? — 4u — 3) t. On substituting (3.9) into (3.45), we
deduce the following three types of traveling wave solutions:
Case 1. If X2 —4p > 0, then we have

u(§)

Y/ svayy Acosh(3/A2 —4p §) ) + Bsinh(3/A? —4u §) bog — A
B Asinh(1y/X2 - 4p €) + Bceosh(3/A2 —4u §) o

(3.46)

Case 2 . If A\? — 4y <0, then we have
u(§)

—Asin(3/4u — X2 §) + Bcos(5/4u — A2 €)
= 4/ — - >\7
(4 = 2% ( Acos(3v/4p — X2 &) + Bsin(3+/4p — M2 €) o

(3.47)
Case 3 . If A2 — 4y =0, then we have

B
R - 3.48
u(§) 2<A+BE>+O‘O A, (3.48)
In particular, if A= 0,B # 0, A > 0, u = 0, then we deduce from (3.46) that
u(§) =A tanh(%&) +ag = A, (3.49)

which represents the solitary wave solutions of the the(3+1)- dimensional Jimbo-
Miwa equation (3.41).

4. Summary and conclusions
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In this paper, we have seen that three types of traveling wave solutions in
terms of hyperbolic, trigonometric and rational functions for the (3+1)- di-
mensional potential- YTSF equation, the (341)- dimensional generalized shal-
low water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation,
the (34+1)- dimensional modified KdV- Zakharov- Kuznetsev equation and the
(341)- dimensional Jimbo-Miwa equation are successfully found out by using

the (%)— expansion method. This method is more powerful, effective and con-
venient. The performance of this method is reliable, simple and gives many

new solutions. The (%)— expansion method has more advantages: It is direct
and concise. It is also a standard and computerizable method which allows us
to solve complicated nonlinear evolution equations in the mathematical physics.
We have noted that this method changes the given problems into simple problems
which can be solved easily. Also, the models proposed in this article described
important applications in physics and engineering.
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