Ostrowski's Type Inequalities for (α, m)-Convex Functions

Muhamet Emin Özdemir, Havva Kavurmaci and Erhan Set*

Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey
e-mail: emos@atauni.edu.tr, havva.kvrmc@yahoo.com and erhanset@yahoo.com

AbStract. In this paper, we establish new inequalities of Ostrowski's type for functions whose derivatives in absolute value are (α, m)-convex.

1. Introduction

Let $f: I \subset[0, \infty] \rightarrow \mathbb{R}$ be a differentiable mapping on I°, the interior of the interval I, such that $f^{\prime} \in L[a, b]$ where $a, b \in I$ with $a<b$. If $\left|f^{\prime}(x)\right| \leq M$, then the following inequality holds (see [1]).

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \leq \frac{M}{b-a}\left[\frac{(x-a)^{2}+(b-x)^{2}}{2}\right] \tag{1.1}
\end{equation*}
$$

This inequality is well known in the literature as the Ostrowski inequality. For some results which generalize, improve and extend the inequality (1.1) see ([1], [4], [6], [8]) and the references therein.

In [9], G. Toader defined m-convexity as the following:
Definition 1. The function $f:[0, b] \rightarrow \mathbb{R}, b>0$, is said to be m-convex, where $m \in[0,1]$, if we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

for all $x, y \in[0, b]$ and $t \in[0,1]$. Denote by $K_{m}(b)$ the set of the m-convex functions on $[0, b]$ for which $f(0) \leq 0$.

In [7], V.G. Miheşan defined $(\alpha, m)-$ convexity as the following :
Definition 2. The function $f:[0, b] \rightarrow \mathbb{R}, b>0$, is said to be $(\alpha, m)-$ convex,

[^0]where $(\alpha, m) \in[0,1]^{2}$, if we have
$$
f(t x+m(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)
$$
for all $x, y \in[0, b]$ and $t \in[0,1]$.
Denote by $K_{m}^{\alpha}(b)$ the class of all (α, m)-convex functions on $[0, b]$ for which $f(0) \leq 0$.

It can be easily seen that for $(\alpha, m)=(1, m),(\alpha, m)$-convexity reduces to m-convexity; $(\alpha, m)=(\alpha, 1),(\alpha, m)$-convexity reduces to α-convexity and for $(\alpha, m)=(1,1),(\alpha, m)-$ convexity reduces to the concept of usual convexity defined on $[0, b], b>0$. For recent results and generalizations concerning $(\alpha, m)-$ convex functions, see ([2] and [3]).

The following theorem contains the Hadamard type integral inequality (see for example [5]).

Theorem 1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be an M-Lipschitzian mapping on I and $a, b \in I$ with $a<b$. Then we have the inequality;

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{M(b-a)}{4} . \tag{1.2}
\end{equation*}
$$

In [1], in order to prove some inequalities related to Ostrowski inequality, M. Alomari, M. Darus, S.S. Dragomir and P. Cerone used the following lemma.

Lemma 1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° where $a, b \in I$ with $a<b$. If $f^{\prime} \in L[a, b]$, then the following equality holds:

$$
\begin{aligned}
f(x)-\frac{1}{b-a} \int_{a}^{b} f(u) d u & =\frac{(x-a)^{2}}{b-a} \int_{0}^{1} t f^{\prime}(t x+(1-t) a) d t \\
& -\frac{(b-x)^{2}}{b-a} \int_{0}^{1} t f^{\prime}(t x+(1-t) b) d t
\end{aligned}
$$

for each $x \in[a, b]$.
The main purpose of this paper is to establish several Ostrowski's type inequalities for functions whose derivatives in absolute value are (α, m)-convex.

2. Main results

In order to prove our results we need the following equality:
(2.1) $m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u=\frac{(x-m a)^{2}}{b-a} \int_{0}^{1} t f^{\prime}(t x+m(1-t) a) d t$

$$
-\frac{(m b-x)^{2}}{b-a} \int_{0}^{1} t f^{\prime}(t x+m(1-t) b) d t
$$

which is a special case of Lemma 1 with $m a \rightarrow a$ and $m b \rightarrow b$.
Theorem 2. Let I be an open real interval such that $[0, \infty) \subset I$ and $f: I \rightarrow \mathbb{R}$ be a differentiable function on I such that $f^{\prime} \in L([m a, m b])$, where $m a, m b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{q}$ is $(\alpha, m)-$ convex on $[m a, m b]$ for $(\alpha, m) \in[0,1] \times(0,1], q>1$, $\frac{1}{p}+\frac{1}{q}=1$ and $\left|f^{\prime}(x)\right| \leq M, x \in[m a, m b]$, then the following inequality holds :
$\left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \leq M\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\frac{\alpha m+1}{\alpha+1}\right)^{\frac{1}{q}} \frac{(x-m a)^{2}+(m b-x)^{2}}{b-a}$
for each $x \in[m a, m b]$.
Proof. From (2.1) and using the Hölder's inequality for $q>1$, we have

$$
\begin{aligned}
& \left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \\
\leq & \frac{(x-m a)^{2}}{b-a} \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) a)\right| d t \\
& +\frac{(m b-x)^{2}}{b-a} \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) b)\right| d t \\
\leq & \frac{(x-m a)^{2}}{b-a}\left(\int_{0}^{1} t^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}(t x+m(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}} \\
& +\frac{(m b-x)^{2}}{b-a}\left(\int_{0}^{1} t^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}(t x+m(1-t) b)\right|^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

Since $\left|f^{\prime}\right|^{q}$ is (α, m)-convex and $\left|f^{\prime}(x)\right| \leq M$, then we have

$$
\begin{aligned}
& \int_{0}^{1}\left|f^{\prime}(t x+m(1-t) a)\right|^{q} d t \\
\leq & \int_{0}^{1}\left[t^{\alpha}\left|f^{\prime}(x)\right|^{q}+m\left(1-t^{\alpha}\right)\left|f^{\prime}(a)\right|^{q}\right] d t \\
\leq & \frac{M^{q}}{\alpha+1}(1+\alpha m)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1}\left|f^{\prime}(t x+m(1-t) b)\right|^{q} d t \\
\leq & \int_{0}^{1}\left[t^{\alpha}\left|f^{\prime}(x)\right|^{q}+m\left(1-t^{\alpha}\right)\left|f^{\prime}(b)\right|^{q}\right] d t \\
\leq & \frac{M^{q}}{\alpha+1}(1+\alpha m)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \\
\leq & \frac{(x-m a)^{2}}{b-a}\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\frac{M^{q}}{\alpha+1}(1+\alpha m)\right)^{\frac{1}{q}} \\
& +\frac{(m b-x)^{2}}{b-a}\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\frac{M^{q}}{\alpha+1}(1+\alpha m)\right)^{\frac{1}{q}} \\
= & M\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\frac{1+\alpha m}{\alpha+1}\right)^{\frac{1}{q}} \frac{(x-m a)^{2}+(m b-x)^{2}}{b-a} .
\end{aligned}
$$

This completes the proof.
Remark 1. Since for $p \in(1, \infty)$ we have

$$
\frac{1}{2} \leq\left(\frac{1}{p+1}\right)^{\frac{1}{p}} \leq 1
$$

if in Theorem 2 we put $m=1$, we obtain

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \leq M\left[\frac{(x-a)^{2}+(b-x)^{2}}{b-a}\right] . \tag{2.2}
\end{equation*}
$$

Now, if we choose in (2.2), $x=\frac{a+b}{2}$, we get

$$
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \leq \frac{M(b-a)}{2} .
$$

Theorem 3. Let I be an open real interval such that $[0, \infty) \subset I$ and $f: I \rightarrow \mathbb{R}$ be a differentiable function on I such that $f^{\prime} \in L([m a, m b])$, where ma,mb $\in I$. If $\left|f^{\prime}\right|^{q}$ is (α, m) - convex on $[m a, m b]$ for $(\alpha, m) \in[0,1] \times(0,1]$ and $\left|f^{\prime}(x)\right| \leq M$, $q \in[1, \infty), x \in[m a, m b]$, then the following inequality holds:

$$
\left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \leq M\left(\frac{2+\alpha m}{\alpha+2}\right)^{\frac{1}{q}} \frac{(x-m a)^{2}+(m b-x)^{2}}{2(b-a)}
$$

for each $x \in[m a, m b]$.

Proof. Suppose that $q=1$. From (2.1) we have

$$
\begin{aligned}
& \left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \\
\leq & \frac{(x-m a)^{2}}{b-a} \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) a)\right| d t \\
& +\frac{(m b-x)^{2}}{b-a} \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) b)\right| d t
\end{aligned}
$$

Since $\left|f^{\prime}\right|$ is (α, m)-convex on $[m a, m b]$ we know that for any $t \in[0,1]$

$$
\left|f^{\prime}(t x+m(1-t) y)\right| \leq t^{\alpha}\left|f^{\prime}(x)\right|+m\left(1-t^{\alpha}\right)\left|f^{\prime}(y)\right|
$$

so

$$
\begin{aligned}
& \left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \\
\leq & \frac{(x-m a)^{2}}{b-a} \int_{0}^{1} t\left[t^{\alpha}\left|f^{\prime}(x)\right|+m\left(1-t^{\alpha}\right)\left|f^{\prime}(a)\right|\right] d t \\
& +\frac{(m b-x)^{2}}{b-a} \int_{0}^{1} t\left[t^{\alpha}\left|f^{\prime}(x)\right|+m\left(1-t^{\alpha}\right)\left|f^{\prime}(b)\right|\right] d t \\
= & \frac{(x-m a)^{2}}{b-a} \int_{0}^{1}\left[t^{\alpha+1}\left|f^{\prime}(x)\right|+m\left(t-t^{\alpha+1}\right)\left|f^{\prime}(a)\right|\right] d t \\
& +\frac{(m b-x)^{2}}{b-a} \int_{0}^{1}\left[t^{\alpha+1}\left|f^{\prime}(x)\right|+m\left(t-t^{\alpha+1}\right)\left|f^{\prime}(b)\right|\right] d t \\
\leq & \frac{(x-m a)^{2}}{b-a} \frac{M}{\alpha+2}\left[1+\frac{\alpha m}{2}\right] \\
& +\frac{(m b-x)^{2}}{b-a} \frac{M}{\alpha+2}\left[1+\frac{\alpha m}{2}\right] \\
= & \left(\frac{2+\alpha m}{\alpha+2}\right) \frac{M}{b-a}\left[\frac{(x-m a)^{2}+(m b-x)^{2}}{2}\right]
\end{aligned}
$$

where we have used the fact that

$$
\int_{0}^{1} t^{\alpha+1} d t=\frac{1}{\alpha+2}
$$

and

$$
\int_{0}^{1}\left(t-t^{\alpha+1}\right) d t=\frac{\alpha}{2(\alpha+2)}
$$

The proof is completed for this case. Suppose now that $q>1$. From (2.1) and using the well-known power-mean inequality, we obtain

$$
\begin{aligned}
& \left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \\
\leq & \frac{(x-m a)^{2}}{b-a} \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) a)\right| d t \\
& +\frac{(m b-x)^{2}}{b-a} \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) b)\right| d t \\
\leq & \frac{(x-m a)^{2}}{b-a}\left(\int_{0}^{1} t d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}} \\
& +\frac{(m b-x)^{2}}{b-a}\left(\int_{0}^{1} t d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) b)\right|^{q} d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

Since $\left|f^{\prime}\right|^{q}$ is (α, m)-convex on $[m a, m b]$, we know that for every $t \in[0,1]$

$$
\left|f^{\prime}(t x+m(1-t) y)\right|^{q} \leq t^{\alpha}\left|f^{\prime}(x)\right|^{q}+m\left(1-t^{\alpha}\right)\left|f^{\prime}(y)\right|^{q}
$$

so we obtain

$$
\begin{aligned}
& \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) a)\right|^{q} d t \\
\leq & \int_{0}^{1} t\left[t^{\alpha}\left|f^{\prime}(x)\right|^{q}+m\left(1-t^{\alpha}\right)\left|f^{\prime}(a)\right|^{q}\right] d t \\
\leq & \frac{M^{q}}{\alpha+2}\left(1+\frac{\alpha m}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} t\left|f^{\prime}(t x+m(1-t) b)\right|^{q} d t \\
\leq & \int_{0}^{1} t\left[t^{\alpha}\left|f^{\prime}(x)\right|^{q}+m\left(1-t^{\alpha}\right)\left|f^{\prime}(b)\right|^{q}\right] d t \\
\leq & \frac{M^{q}}{\alpha+2}\left(1+\frac{\alpha m}{2}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \left|m f(x)-\frac{1}{b-a} \int_{m a}^{m b} f(u) d u\right| \\
\leq & M\left(\frac{2+\alpha m}{\alpha+2}\right)^{\frac{1}{q}} \frac{(x-m a)^{2}+(m b-x)^{2}}{2(b-a)}
\end{aligned}
$$

which completes the proof.
Remark 2. Since for $p \in(1, \infty)$ we have

$$
\frac{1}{2} \leq\left(\frac{1}{p+1}\right)^{\frac{1}{p}} \leq 1
$$

if in Theorem 3 we put $m=1$ and $x=\frac{a+b}{2}$, we obtain

$$
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \leq \frac{M(b-a)}{4}
$$

which is the inequality in (1.2).
Remark 3. In Theorem 3, if we choose $(\alpha, m)=(\alpha, 1)$, we have

$$
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \leq \frac{M}{b-a}\left[\frac{(x-a)^{2}+(b-x)^{2}}{2}\right]
$$

which is the inequality in (1.1).

References

[1] M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski's inequalities for functions whose derivatives are s-convex in the second sense, RGMIA Res. Rep. Coll., 12(2009), Supplement, Article 15. [ONLINE: http://www.staff.vu.edu.au/ RGMIA/v12(E).asp]
[2] M. K. Bakula, M. E. Özdemir and J. Pečarić, Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure \& Appl. Math., 9(2008), Article 96, [ONLINE: http://jipam.vu.edu.au].
[3] M. Klaričić Bakula, J. Pečarić, and M. Ribičić, Companion inequalities to Jensen's inequality for m-convex and (α, m) - convex functions, J. Inequal. Pure \& Appl. Math., $\mathbf{7}$ (2006), Article 194, [ONLINE: http://jipam.vu.edu.au].
[4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2)(2002), Article 1, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5n2.asp].
[5] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. of Math. Anal. Appl., 245(2)(2000), 489-501.
[6] S. S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002, Victoria University, Melbourne,

Australia, RGMIA Res. Rep. Coll., 5(2002), Supplement, Article 30, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5(E).asp].
[7] V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania) (1993).
[8] E. Set, M. E. Ozdemir and M.Z. Sarikaya, New inequalities of Ostrowski's type for sconvex functions in the second sense with applications, arXiv:1005.0702v1 [math.CA], May 5, 2010.
[9] G. Toader, Some generalizations of the convexity, Proceedings of The Colloquium On Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.

[^0]: * Corresponding Author.

 Received February 9, 2010; revised June 12, 2010; accepted September 3, 2010.
 2000 Mathematics Subject Classification: 26D15.
 Key words and phrases: (α, m)-Convex Function, m-Convex Function, Convex Function, Ostrowski's Inequality, Hölder's Inequality, Power Mean Inequality.

