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ON THE CLOSED EINSTEIN-WEYL STRUCTURE AND
COMPACT K-CONTACT MANIFOLD

AMALENDU GHOSH

ABSTRACT. We study closed Einstein-Weyl structure on compact K-con-
tact manifolds and prove that a compact K-contact manifold admitting
a closed Einstein-Weyl structure is Einstein and Sasakian.

1. Introduction

In recent years, much attention has been given to the classification of Rie-
mannian manifolds admitting several generalizations of Einstein metric. An
interesting generalization of such metric is the so-called Einstein Weyl met-
ric. This appears as a conformal generalization of Einstein metric, defined in
the background of Weyl manifold. The notion of Weyl manifold was proposed
by H. Weyl [19] as a generalization of the Riemannian connection to find a
good geometric model for space-time geometry to unify field theory. Although
his attempt failed, but his connection provides an instructive example of non-
Riemannian geometry which helps us to explain several physical problems.

A Weyl structure on a manifold M is a class [g] = {e*fg: f € C®(M)} of
conformally related Riemannian metric g of M which satisfies the conformally
invariant equation: Dl9lg = —20 ® g, where 6 is a unique 1-form associated
with the metric g such that g(X, F) = 6(X), and Dl is the unique torsion free
connection known as Weyl connection. The vector field E dual to the Lee form
0 with respect to g is known as the Finstein-Weyl vector field. A Riemannian
manifold admitting such structure referred as Weyl manifold. Thus a Weyl
manifold is a manifold equipped with a conformal structure and a compatible
Weyl connection. We denote it by (M, [g], D91). This Weyl structure is said to
be closed if the unique 1-form 6 is closed, i.e., dd = 0. Unlike the Riemannian
manifold, the Ricci tensor of a Weyl manifold need not be symmetric. There-
fore, to define Einstein like condition in the background of Weyl manifold, one
needs to consider the symmetric part of the Ricci tensor of the Weyl connec-
tion. If this is proportional to a Riemannian metric of the conformal class
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[g], then we say that the structure is Einstein- Weyl. It is evident that every
Einstein manifold can be regarded as an Einstein-Weyl manifold. But there
exists manifold having no Einstein metric admits an Einstein-Weyl structure
(e.g. see [4], [15]). Indeed, by applying a D-homothetic deformation (Tanno
[17]) to the metric of the unit sphere S?"*1(1) one can prove that the resulting
metric becomes 7-Einstein (i.e., the Ricci tensor S satisfies S = ag + n®@n for
some constants a, 8 and 7 is the contact form), and it admits an Einstein-Weyl
structure (g, fn) with 8 < 0 for some constant f. For details we refer to [4]
and [8].

Recently, Einstein-Weyl structures have received a lot of attention in the
frame work of n-Einstein contact metric manifold. Because it has been ob-
served by several authors (see [8], [11], [12], [14] and [15]) that there is a nice
connection between Einstein-Weyl structure and n-Einstein contact geometry.
In this direction, the first breakthrough was provided by Pedersen-Swann [16]
(see also Higa [9]) who constructed such structures on the principal circle bun-
dle over Kaehler Einstein manifolds with positive scalar curvature. Later on,
Narita ([14], [15]) and Boyer-Galicki-Matzeu [4] constructed several examples
of Einstein-Weyl structures in the framework of n-Einstein Sasakian manifolds.
It is known (see [9]) that a Riemannian manifold admits a pair of Einstein-
Weyl structures (g, +6) if and only if it satisfies some additional conditions on
the Ricci tensor and the covariant derivative of the 1-form 6. Recall that any
n-Einstein K-contact manifold admits an Einstein-Weyl structure (g, fn) with
B < 0 for some constant f (see [4]). Then it also admits an Einstein-Weyl
structure (g,—fn). Particularly, in [4] the authors proved that “a Sasakian
manifold M"Y (p, &, n,g) admits a pair of Einstein Weyl structures (g, +6)
(where 0 is the 1-form associated with the metric g of the conformal class [g])
if and only if it is n-Einstein with Einstein constants («, ), where 8 < 0 and
0 = +un such that p> = —3/(2n — 1)”. Later on, the author [8] extended this
result for all classes of complete K-contact manifolds by proving that “if a com-
plete K -contact manifold admits the pair of Einstein-Weyl structures (g, £6),
then it is compact n-Einstein and Sasakian with Finstein constants («, B) where
B < 0”. These results imply that there is a strong connection between the pair
of Einstein-Weyl structures (g, +6) and n-Einstein K-contact geometry.

In this paper, we study closed Einstein-Weyl structure on compact K-contact
manifold and improved a result obtained by Matzeu [12]. Actually, Matzeu
(see [12]) proved that “a compact K -contact manifold M (p,&,n,q) of dimen-
sion 2n+1 > 3 admitting a closed Einstein- Weyl structure with 6 as its 1-form
associated with the metric g € [g] is Sasakian if and only if it is n-FEinstein.”
This establishes again a strong connection between 7n-Einstein Sasakian geom-
etry and closed Einstein-Weyl structure. However, by using the full strength of
K-contact geometry we have been able to prove that any compact K-contact
manifold admitting a closed Einstein-Weyl structure is Einstein-Sasakian. We
address these issues in Section 4.
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2. Rudimets of K-contact geometry

Now, we review some basic contact metric geometry. A (2n+1) dimensional
Riemannian manifold (M, g) is said to be an almost contact metric manifold if
there exist a (1,1) tensor field ¢, a unit vector field ¢ (called the Reeb vector
field) and a 1-form 7 such that

P’X = —X +n(X)¢, g(X, &) =n(X), g&&=1

for any vector field X. From these it is easy to verify that ¢& = 0 and nop = 0.
For such a manifold, one can always define a 2-form ¢ by ¢(X,Y) = g(X, pY),
called the fundamental 2-form. Further, an almost contact metric structure
of M is said to be contact metric if ¢ = dn. If, in addition £ is Killing, then
M is said to be K-contact. The following formulas are valid for a K-contact
(Sasakian) manifold ( see [1]):

(2.1) Vx€=—¢X,
(2.2) Q€ = 2n¢,

(2.3) R(X,§)¢ = X —n(X)¢,
(2.4) R Y)X = (Vyp)X,

(2.5) (Vyp) X + (Voyp)pX = 2g(Y, X)§ — n(X)(Y +n(Y)E),

where @ is the Ricci operator associated with the Ricci tensor S, R is the
Riemann curvature tensor of g and V is the operator of covariant differentiation
of g. We also note that the almost contact metric structure is said to be
normal if [p, p](X,Y) +2dn(X,Y )¢ = 0, for any vector field X,Y on M, where
[0, 0](X,Y) = [pX, Y] + ¢*[X, Y] — o[pX,Y] — ¢[X,¢Y]. A normal almost
contact metric manifold is called a Sasakian, equivalently, an almost contact
metric manifold is Sasakian if and only if

(Vxp)Y = g(X,Y)§ —n(X)Y

for any vector field X,Y on M. From the definition it follows that n A (dn)™
is non vanishing everywhere on M, which is also the volume form on M. In
other words, a contact metric manifold M (p, &, n, g) is Sasakian if and only the
metric cone C(M)(dr? + r2g,d(r?n)) is Kaehler. A Sasakian manifold is K-
contact, but the converse is not true, except in dimension 3. Another equivalent
characterization of a Sasakian manifold is that a contact metric manifold is said
to be Sasakian if and only if the curvature tensor R satisfies

(2.6) R(X,Y)¢ = (V)X — g(X)Y.

For details about contact metric manifolds we refer to [1].
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3. Einstein-Weyl geometry

We now assume that M?"+1(p, £ 7, g) admits an Einstein-Weyl structure,
i.e., the metric g represents the Weyl structure. Then from D¢ = —20 ® g it
is easy to deduce that

(3.1) DYY = VxY +0(X)Y +6(Y)X — g(X,Y)E,

where V is the Riemannian connection of g and X,Y are arbitrary vector fields
of M. We note that the equation (3.1) and DI9/g = —20® g are invariant under
the transformations § = >/ g and 6 =  — df, where f is a smooth function on
M. In particular, if the 1-form 6 is closed, then the Weyl connection becomes
locally the Riemannian connection. From (3.1) one can derive the relation

between the Riemann curvature tensor R and the Weyl curvature tensor R” .
(see Higal9]) as follows:
RPYNX,Y)Z = R(X,Y)Z + {(Vx0)Z — 0(X)0(2)}Y
—{(Vy0)Z2 - 0(Y)0(Z2)} X —g(Y, 2){(Vx E
—0(X)E}+9(X, 2){(VyE-O6Y)E}+dI(X,Y)Z
(3:2) — 101" {9(Y, 2)X — g(X, 2)Y}
for every vector field X,Y, Z on M. As a consequence equation (3.2) provides
the following relation between the Weyl Ricci tensor S9! of the connection D9
and the Ricci tensor S of the Riemann connection V (see [9])
SPY(X,Y) = S(X,Y) — 20(Vx0)Y + (Vy0)X
(3.3) +(2n = DOX)O(Y) + (60 — (2n — 1) 0]*)g(X, ),
where 66 is the co-differential of 6 and || is the pointwise norm of 6 with

respect to g. A Weyl manifold (M, [g], D!9]) is said to be Einstein-Weyl if there
exists a smooth function A on M such that:

(3.4) SPX,Y) + 8PN (Y, X) = Ag(X,Y).
Thus, from (3.4) and (3.3) it follows that the Weyl manifold (M, [g], D) is
Einstein-Weyl if and only if

2n—1

(3.5) S(X,Y)— (Vx0)Y + (Vy0)X) + (2n—1)O(X)0(Y) = 0g(X,Y)

for every vector field XY on M and o is smooth function on M. We refer
this equation as Einstein-Weyl equation. Note that if 6 is closed, then 6 be-
comes locally exact, and, hence the metric g is locally conformal to an Einstein
metric. For instance, the product N x S is locally conformal to an Einstein
manifold, where N is any Einstein manifold of positive scalar curvature. As
a consequence, Einstein-Weyl structure is considered as a nice generalization
of Einstein metric from the view point of conformal geometry. In [5] Gaudu-
chon proved a fundamental theorem on Einstein-Weyl structures, when M is
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compact. Particularly, he proved that “On a compact Weyl manifold, up to
homothety, there is always possible to find a unique metric gy in the conformal
class [g] such that the corresponding 1-form 6y is co-closed (i.e., 66y = 0)”. We
shall refer this metric as the Gauduchon metric. By virtue of this, Pedersen-
Swann [16] (see also Tod [18]) proved that on a compact Einstein-Weyl manifold
this co-closed 1-form turns out to be the dual of a Killing field. Consequently,
on every compact manifold one can split the Einstein-Weyl equation (3.5) into
the simplified Einstein-Weyl equation and the Killing dual field equation:
(VXH)Y + (Vye)X =0.
Closed Einstein-Weyl structure on a compact manifold enjoys a nice property.
In fact, Gauduchon [6] showed that if the 1-form associated with the Einstein-
Weyl structure is closed and exact, then the Weyl curvature tensor R” ! and
the Weyl Ricci tensor SP'* vanish identically (see also Matzeu [12]), and as a
result equations (3.2) and (3.3) reduces to
R(X,Y)Z ={(Vy0)Z —-0Y)0(Z2)} X —{(Vx0)Z —0(X)0(Z)}Y
+ gV, Z{(VxE — 0(X)E} — g(X, 2){(Vy E — 0(Y)E}

(3.6) +10* {g(Y. 2)X — g(X, Z)Y},
(2n —1)(Vx0)Y = S(X,Y) + (2n — DO(X)H(Y)
(3.7) + (060 — (2n —1)|6)g9(X,Y)

for every vector field X,Y, Z on M. Now, we are at a position to derive some
equations for our latter use. First, we can write equation (3.7) as

(3.8) 2n—-1)VxE=QX + (2n—1I(X)E + )X,
where A is a function given by
(3.9) A=60—(2n—1)|0]%.

Differentiating equation (3.8), using the resulting equation in the well-known
formula:

R(X,Y)=[Vx,Vy] = Vixy]
and the repeated use of (3.8), one can easily deduce
(20— DR(X,Y)E = (VxQ)Y — (VyQ)X +6(Y)QX
—0(X)QY + \J(Y)X —0(X)Y]
(3.10) + (XN)Y — (YV)X.
Finally, we remark that the odd dimensional spheres and products of spheres
St x §2n+1 admit Einstein-Weyl structures while S* x S? and S x S% do not

carry any Einstein metric [10]. In particular, S' x S?"+1 admits flat Weyl
structures, which are therefore closed Einstein-Weyl.
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4. Main results

We now consider a compact K-contact manifold admitting closed Einstein-
Weyl structure to prove the following:

Theorem 4.1. Let M (p,&,n,9) be a compact K -contact manifold of dimension
2n+1 > 3. If g represents a closed Finstein-Weyl structure with 6 is a 1-form
associated with g € [g], then M is Finstein and Sasakian.

Proof. Differentiating covariantly (2.2) along an arbitrary vector field X and
then recalling (2.1) we find that

(4.1) (VxQ)¢ = QvX — 2npX.
Taking scalar product of (3.10) with £, using (4.1) and (2.2) provides

(2n - Dg(R(X,Y)E,§) = g((Qp + ¢Q)X,Y) — dng(pX,Y)
+ (2n + N[O )n(X) — 0(X)n(Y)]

(4.2) + (XA (Y) = (Y A)n(X).
Replacing Y by ¢ in (4.2) and making use of (2.2), (2.3) we obtain
(4.3) A+ D{E —n(E)§t = DA = (EA)€

for all X in M and D is the gradient operator. Differentiating this along an
arbitrary vector field X and using (2.1) gives

A+ D{VxE +n(X)pX + g(E, pX)§ — g(Vx E,§)E}
= (XAN)@?E + Vx DX+ (EN)pX — X(ENE.

Inner product of this equation with an arbitrary vector field Y, symmetrizing
the resulting equation and by virtue of the Poincare lemma: g(VxD\Y) =
g(Vy DX, X) shows

A+ D{2n(E)g(pX,Y) + g(E, pX)n(Y)

—g9(E, Y )n(X) = g(VxE,&n(Y) + g(VyE,{n(X)}
= (XNg(¢*E,Y) — (YN)g(¥*E, X)

+2(EN)g(pX,Y) + Y (ENN(X) — X (ENn(Y),

where we have also used the fact that the 1-form 6 is closed. Now, we replace
X by X and Y by ¢Y in the foregoing equation to achieve

200+ Dn(E)g(pX,Y) = (¢ XA)g(eE,Y) — (Y N)g(pE, X)
(4.4) +2(EN)g(pX,Y).

Taking inner product of (4.3) with ¢ X one can deduce
(PXA) + (A +1)g(pE, X) = 0.
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By virtue of this, the first two term of the left hand side of (4.4) vanishes. So,
we have [(A+1)n(E) — &N dn(X,Y) = 0. Moreover, since dn(X,Y) = g(X, ¢Y)
is non-vanishing on any K-contact manifold, we obtain

(4.5) A+ 1)n(E) = €.
Next, we contract equation(3.10) to get
1
(4.6) QF + 4—Dr + DX+ (60)E = 0.
n
As ¢ is Killing, &r = 0. Thus, the inner product of (4.6) with & yields
9(QE, &) + EX+ (60)n(E) = 0.
Finally, applying (2.2) and (4.5), the last equation entails that
(4.7) (60 + A+ 2n+ 1)n(E) =0.

At this point, let us assume that n(E) = 0 in some open set O of M. Then
differentiating n(E) = 0 along pFE and using (2.1) we immediately obtain

9(VepE, &) + g(pE, oF) = 0.

Taking (2.2) and (3.8) into account we compute

(2n —1)g(Vx E,§) = 2n + A)n(X) + (2n — 1)0(X)n(E).
From which it follows that g(V,rE, ) = 0. Therefore, we have g(¢E, oFE) =0
on O. This gives pE = 0. Operating by ¢ and since n(E) = 0 we ultimately
find E =0 on O. Hence, from (3.7) the Ricci tensor vanishes identically on O.
But by virtue of (2.2), this is impossible. Consequently, n(E) is non-vanishing
everywhere on M. So, we have d0 + A+ 2n+ 1 = 0. Since £ is Killing, we have
£¢S = 0. Making use of (4.1) it follows that V:Q = Q¢ — ¢Q. Next, replacing
X by £ in (3.10), using (4.1) and the foregoing equation gives

2n—1DR(EY)E = (VeQ)Y — (VyQ)§+ 0(Y)QE — 0(§)QY
+AO(Y)E = 0()Y]+ (ENY = (YA)E
= — QY +2npY + (A 4+ 2n)0(Y)¢

(4.8) —0(O[QY + XY+ (ENY — (Y AL

Scalar product of (4.8) with an arbitrary vector field X and making use of (2.6)
provides

2n+1)g((Vyp)X, E) = g(¢QY, X) — 2ng(¢Y, X)
— (A +2n)0(Y)n(X) + 0(6)g(QY + \Y, X)
(4.9) —(ENg(Y, X) — (Y )n(X).

Replacing X by ¢X, Y by ¢Y in (4.9), adding the resulting equation with
(4.9) and then recalling (2.5), we obtain

(2n 4+ 1D){29(Y, X)§ = n(X)(Y +n(Y)E}
= g((Qy + Q)Y, X) — dng (oY, X) — (A +2n)0(Y)n(X) — 0(§)g(QY + 1Y, X)
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+0(9)g(eQp + Ap°Y, X) — (EN)g(Y, X) — (EN)g(9Y, 0 X) + (Y A)n(X).

Anti-symmetrizing the previous equation shows that

29((Qp + vQ)Y, X) — dng(pY, X)
= A+ D{n(X)0Y) —n(Y)O(X)} — (Y A)n(X) + (X)n(Y).

Choosing X,Y 1£, the foregoing equation yields
9((Qe + ¢Q)Y, X) = dng(pY, X).

Clearly for any vector field X, X — n(X)¢ is orthogonal to £. Therefore, re-
placing X by X —n(X)& and Y by Y — n(Y)¢ in the preceding equation and
using (2.2), we infer

(4.10) (Qe + Q)Y = dnpY

for any vector field Y. Let {ex, ver, &}, k=1,2,...,n, be a p-basis of M such
that Qer = prer. From which, we have pQer = ugper. Substituting ey for Y
in (4.10) and using the foregoing equations we obtain Qe = (4n — uk)pex.
Computing the scalar curvature r = g(Q&, &) +>_r_, [9(Qex, ex)+9(Qeer, ver)]
with the use of (2.2) we get r = 2n(2n 4+ 1). Going back to equations (4.3)
and (4.5) we deduce that DA = (A + 1)E. Utilizing this and noting that the
scalar curvature is constant, it follows from (4.6) that QF + (A+ 30+ 1)E = 0.
But we have already deduced that 6 + A 4+ 2n + 1 = 0. Therefore, we obtain
QF = 2nE. Taking covariant differentiation of this along an arbitrary vector
field X and using (3.8) one obtains

(4.11) 2n — 1D)(VxQ)E + Q*X = (2n — \)QX + 2n\X.

We now take the trace of (4.11) over X and use r = 2n(2n + 1) to achieve
|Q|> = 2nr. Use of this and r = 2n(2n + 1), we compute
92 2 2
I? = Q) - = 2nr —

e T T T
=4n*(2n+1) —4n*(2n+1) = 0.

r

|Q_2n+1

Since the length of the symmetric tensor @ — 7571 vanishes, we must have
Q = 57—=1 =2nl. Since M is Einstein and compact, applying Boyer-Galicki’s

2n+1
Theorem ([3]) “A compact Einstein K-contact manifold is Sasakian”, we com-
plete the proof. O

Since any Sasakian manifold is K-contact, the above result is also true for
Sasakian manifolds. Thus, in view of the above Theorem we can extend the
well known result of Boyer-Galicki [2] (see also [3] and [13]) which says that
any simply connected Sasakian Einstein manifold is a spin manifold

Theorem 4.2. If a simply connected compact K -contact manifold admits a
closed Finstein- Weyl structure, then it is necessarily spin.
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Remark 4.1. After the submission of this paper, Gauduchon-Moroianu upload
a paper [7] in arXiv (appeared on 6th January 2016) which contains the same
result as Theorem 4.1. However, the proof of our result is slightly different
from that of [7]. In our proof, we have used some tensorial computation that
involves the formulas of closed Einstein-Weyl structures and the full strength
of the K-contactness property (i.e., the formulas involving Ricci curvature and
curvature tensor). On the other hand, the proof in [7] requires two more results,
e.g., Proposition 2.1 and Proposition 2.2. For details we refer to [7].

Acknowledgement. The author is very much thankful to the reviewer for
some valuable remarks.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Math. 203 Birkh&user, Boston-Basel-Berlin, 2002.
[2] C. P. Boyer and K. Galicki, On Sasakian Einstein geometry, Internat. J. Math. 11
(2000), no. 7, 873-909.
, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001),
no. 8, 2419-2430.
[4] C. P. Boyer, K. Galicki, and P. Matzeu, On n-Einstein Sasakian geometry, Comm.
Math. Phys. 262 (2006), no. 1, 177-208.
[5] P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann.
267 (1984), no. 4, 495-518.
, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 x S3,
J. Reine Angew. Math. 469 (1995), 1-50.
[7] P. Gauduchon and A. Moroianu, Weyl-Einstein structures on K-contact manifolds,
arXiv:1601.00892v1 (5th Jan, 2016).
[8] A. Ghosh, Einstein-Weyl structures on contact metric manifolds, Ann. Glob. Anal.
Geom. 35 (2009), no. 4, 431-441.
[9] T. Higa, Weyl manifolds and Finstein- Weyl manifolds, Comment. Math. Univ. St. Paul.
42 (1993), no. 2, 143-160.
[10] N. J. Hitchin, Compact four-dimensional Einstein manifolds, J. Differentail Geom. 9
(1974), 435-441.
[11] P. Matzeu, Almost contact Einstein- Weyl structures, Manuscripta Math. 108 (2002),
no. 3, 275-288.
, Closed FEinstein- Weyl structures on compact Sasakian and cosymplectic mani-
folds, Proc. Edinb. Math. Soc. 54 (2011), no. 1, 149-160.
[13] A. Moroianu, Parallel and Killing Spinors on Spin® manifolds, Comm. Math. Phys.
187 (1997), no. 2, 417-427.
[14] F. Narita, Riemannian submersions and Riemannian manifolds with FEinstein- Weyl
structures, Geom. Dedicata 65 (1997), no. 1, 103-116.
, Einstein-Weyl structures on almost contact metric manifolds, Tsukuba J.
Math. 22 (1998), no. 1, 87-98.
[16] H. Pedersen and A. Swann, Riemannian submersions, four manifolds and Einstein- Weyl
geometry, Proc. London Math. Soc. 66 (1993), no. 2, 381-399.
[17] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968),
700-717.
[18] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. 45
(1992), no. 2, 341-351.

3]

[6]

(12]

(15]




1878 A. GHOSH

[19] H. Weyl, Space- Time-Matter, Dover, New York, 1952 (translation of the fourth edition of
Raum, Zeit, Materie, the first edition which was published in 1918 by Springer, Berlin).

AMALENDU GHOSH

DEPARTMENT OF MATHEMATICS
CHANDERNAGORE COLLEGE
CHANDANNAGAR: 712 136, W.B., INDIA
E-mail address: aghosh_70@yahoo.com



