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ON THE g-CIRCULANT MATRICES

MUSTAFA BAHSI AND SULEYMAN SOLAK

ABSTRACT. In this paper, firstly we compute the spectral norm of g-
circulant matrices Cy,, g = g-Circ(co, c1,...,¢cn—1), where ¢; > 0or ¢; <0
(equivalently ¢; - ¢; > 0). After, we compute the spectral norms, deter-
minants and inverses of the g-circulant matrices with the Fibonacci and
Lucas numbers.

1. Introduction

An n x n matrix C is called a circulant matrix if it is of the form

Co C1 T Cn—1
Cn—1 Co e Cn—2
C = Cn—2 Cn—1 o Cn—3
Cc1 Co . .. Co
or an n X n matrix C' is circulant if there exist cg, c1, ..., c¢,_1 such that the 7,5

entry of C is ¢i—jmodn, Where the rows and columns are numbered from 0 to

n — 1 and £k mod n means the number between 0 to n — 1 that is congruent to

kmodn . Thus, we denote the circulant matrix C as C' = Circ(co, ¢1, - - -5 Cn_1)-
An n x n matrix Cj is called a g-circulant matrix if it is of the form

Co C1 T Cn—1

Cpn—g Cpn—g+1 o Cp—g—1

(11) Cg = Cn—2g Cn—2g+1 o Cpn—2g—1
Cq Cg+1 e Cg-1

where g is a nonnegative integer. The entries of the matrix Cy are characterized
by the rule Cy = [c(i—jg) mod n]f;zlo Also, the matrix Cy is determined by its
first row elements and the parameter g, that is, its (j + 1)th row is obtained
by giving its jth row a right circular shift by ¢ positions. Thus, we denote the
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g-circulant matrix Cy as Cy = g-Circ(co,c1,...,¢n—1). When we take g = 1,
the matrix Cy = Circ(cp, ¢1, ... ,¢p—1) is an ordinary circulant matrix (briefly,
circulant matrix). Any circulant matrix and g-circulant matrix has many in-
teresting properties. Some of them are [8]:

1. Let A be n x n. Then A is a circulant if and only if

Am = TA,

where the matrix 7 = Cire(0,1,0,...,0).

2. Circ(eg, €1y yCne1) =col + 1w+ -+ cpm

3. All circulants of the same order commute. If C is a circulant so is C*.
Hence C and C* commute and therefore all circulants are normal matrices,
where C™* is conjugate transpose of C.

4. A is a g-circulant matrix if and only if Am = 7w A9.

5. Let A be a nonsingular g-circulant matrix. Then A~! is a g~ '-circulant.

6. If the n x n matrices A, C' and @ are of the forms A = ¢g-Circ(ag, a1, . . -,
an—1), C = Circ(cop, 1, .. .,cn—1) and Q = ¢g-Circ (1,0,0,...,0), then

n—1

1

(1.2) AA* is a circulant matrix,

(1.3) A=QC,
and for (n,g) =1,
(1.4) Q' = Q" (Q is unitary).

For more introduction and algebraic properties of circulant (or g-circulant)
matrices, please refer to the classical book by Davis [8].

The g-circulant matrices play important roles in physics, signal and image
processing, statistics, coding theory and so on. There are lots of articles con-
cerning the determinants, inverses, spectral norms and many applications of
circulant (or g-circulant) matrices [2, 4-7, 9, 10, 13, 14, 16-18, 22—24]. Solak
[17, 18] has presented some bounds for the spectral and Euclidean norms of
circulant matrices with the Fibonacci and Lucas numbers. Shen et al. [16] have
computed the determinants and inverses of circulant matrices with Fibonacci
and Lucas numbers. Similarly, Bozkurt and Tam [7] have computed the de-
terminants and inverses of circulant matrices with Jacobsthal and Jacobsthal—
Lucas Numbers. Ngongiep [14] has showed the singular values of g-circulants.
Zhou and Jiang [24] have derived explicit expressions of spectral norms for cer-
tain of g-circulant matrices with classical Fibonacci and Lucas numbers entries
when (n, g) = 1. In this paper, we study some properties of g-circulant matrices
with the Fibonacci and Lucas numbers when (n,g) = 1 and (n, g) # 1.

The main contents of this paper are organized as follows: In Section 2, we
give some preliminaries, definitions and lemmas related to our study. In Section
3, firstly we compute the spectral norm of g-circulant matrix with all entries are
nonnegative or nonpositive. Secondly, we give some special cases of our results
including Fibonacci and Lucas numbers. In Sections 4 and 5, we compute
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determinants and inverses of the g-circulant matrices with the Fibonacci and
Lucas numbers by using results of the paper [16].

2. Preliminaries

The sequences of the Fibonacci numbers are one of the most well-known
sequences, and it has many applications to different fields such as mathematics,
statistics and physics. The Fibonacci numbers are defined by the second order
linear recurrence relation: F,i1 = F, + F,,-1 (n>1), Fp = 0 and F; =
1. Similarly, the Lucas numbers are defined by L,,+1 = L, + L,—1 (n > 1),
Lo =2 and L1 = 1. Let « and 8 be the roots of the characteristic equation
2? —x — 1 =0, then the Binet formulas of F,, and L,, are [16]:

n n
ol A SN LY
a—f

The Fibonacci and Lucas numbers and their generalized forms have many
applications in matrices and have many interesting identities [1, 3, 7, 9, 11, 12,
15-21]. Two of them are:

n—1

(21) ZFS = Fn+1 - ]-7
s=0

and
n—1

(2.2) > Li=Lpy—1.
s=0

Definition 1. Let A = (a;;) be any m x n matrix. The spectral norm of A is
[Ally = | /max); (A*A),

where \; (A*A) are eigenvalues of A*A and A* is conjugate transpose of A.

Lemma 1 ([16]). Let A, = Circ(Fy, Fa,..., Fy,) be a circulant matriz. Then
we have

n—1 1-F k—1
det A, = (1— Fop)" '+ Fp %) Ky (F"“) .
k=1 n

Lemma 2 ([16]). Let A,, = Circ(Fy, Fs, ..., F,) (n > 2) be a circulant matriz.
Then we have

A;1 = %Circ(f07flvf25 .. 'afn—l)’
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where

nzF7 -
1+ Zm, Zf SZO7

pi—1
1+ Z P 1#“) , if s=1,
5—2

_W, if 2<s<n-1,

n—i—1
) , if s=n.

., Ly) be a circulant matriz. Then

- F+ZF(

Fn+1

Lemma 3 ([16]). Let B, = Circ(Ly, Lo, ..
we have

n—1 1 L k—1
n— n— — +1
det By, = (1= Lyt1)" " + (L — 2) 2k§7lj<Lk+2—3Lk+l> (H> -

Lemma 4 ([16]). Let B,, = Circ(Ly, Lo, ..., Ly,) be a circulant matriz. Then
we have

1
(24) Bi1 = rCirC(lo7ll,lg7...,ln_l),

n
n

where

n—2 i—1
Ln 71'_3Ln —1 Ln_2 N
1_|_ Z: (Lnt2 (Ll_zlwrl)gi ) , Zf s = O7

n—2 X
_ (Lng1—i—3Ln_s)(Ln=2)""" .o
ly = ot z; (Li—Lnt1)* , i s=1,
=

_ 5(Lp—2)°?
(Li—Lpy1)°—17

if 2<s<n-1,

Lpnga

Ly —3L, + Tfo(L‘H —3Lit1) (LlL,"ifQ)n_l_l , if s=mn.
Throughout this paper the n x n matrices Cp 4, Cp1, Cng(F), Cn q(L),

Cn,1(F),Cp1(L) and Q4 denote the following matrices:

Ch.g = g-Circ(co, c1, ..., Cn-1),

Cy.1 = Circ(cg, 1, .-+, Cn-1),

Cn g Fs) = g'CirC(F57Fs+17 cee 7Fs+n—1)a

)¢

(
Cn71(Fg) CiI‘C(FS,Fs_;,_l,... Eg+n_1),
Cn’g(LS) 9- Cer(st Ls+1; ceey Ls—i—n—l),
Cn,l(Ls) Cer(LS7 Ls+17 R Lernfl)

and
Qn,g = ¢-Circ (1,0,...,0),
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where ¢; > 0 or ¢; < 0 (equivalently ¢;.c; > 0) (4,7 =0,1,...,n—1), F,, and
L,, denote the nth Fibonacci and Lucas numbers, respectively. Also, [n,g]
and (n,g) denote the least common multiple of n, g and the greatest common
divisor of n, g, respectively.

3. The spectral norm

Theorem 1. The spectral norm of the matriz Cy, 4 holds

1
k—1n—1 2

||Cn79H2 - (n7g)zzcscs—mg )

m=0s5=0

where k = 9
g

Proof. From (1.2), the matrix C,, ,C;,  is a circulant matrix. If the first row
of Cp 4Cy , 18 (ap,a1,...,a,-1), then

ao ar - Qn-1
" ap—-1 Qo - Ap—2
C”agcn,g =
al a,2 e CLO
Co C1 T Cn—1 Co Cpn—g te Cg
Cn—g Cn—g+1 N Cn—g—1 C1 Cn—g+1 N Cg+1
L Cg Cg+1 e Cg—1 Ch—1 Cp—g—-1 Cg—1

From matrix multiplication, we obtain

n—1
3.1 a; = CsCs—ig-
( ) ogigznq Z sCs—ig
s=0
Since ¢fs—(pk+j)g] = C(s—jg) Under mod n, we have a; = api+;, where k = %,
Jj=01...,k=1,p=0,1,...,2 — 1. Then, for every j = 0,1,...,k — 1

)

aj(equivalently the block (ag,a1,...,ar_1)) is repeated 7 times in the row
(ag,a1,...,an—1). Thus, the first row of Cy, (,C7:  is
ap,a1,-..,0k-1,00,01,.-.,0k—1,.--,00,01,...,0k—1
1 2 o

Since the circulant matrix Cp, ,C7,  is normal, its spectral norm is equal to its
spectral radius. Furthermore, by considering C\, ,Cy,  is irreducible and its
entries are nonnegative, we have that the spectral radius (or spectral norm) of
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the matrix C), ,C}, ; is equal to its Perron root. We select an n-dimensional
column vector v = (1,1,...,1)T, then by (3.1)

n—1 nkrfl nkflnfl
[C’n,gCZ’g} v = (Z%) v = (k Zam> v = (k} Z chcsmg> .
=0 m=0 m=0s=0
k—1n—1
Obviously, 7 > >~ ¢sCs—mg is an eigenvalue of C,, ,C}  associated with v and
m=0s=0
it is the Perron root of C,, ,Cy, /. Hence

k—1n—1

|CrgCr gl = %Z chcs_mg.

m=0s=0

Finally, from the equalities HCn’gH; = HCn,gC’; and ¢ = (n,9), [[Crngll,

holds

oll2

k—1n—1 %
||Cn,gH2 = (n7g)zzcscs—mg‘| . |:|

m=0s5=0

Example 1. If we take firstly ¢; = F; and secondly ¢; = L; in Theorem 1, we
have

N

k—1n—1

||Cn,g(F0) ”2 = (n7 g) Z ZE@E@—mg

m=0s=0

and

N

r k—1n—1
||CTL79(L0)||2 - (Tl, g) Z ZLsLs—mg]

m=0s5=0

Theorem 2. The spectral norm of the matriz C, 4 holds

n—1
S, if >0, 0<s<n-—1,

[Crgll, =9 29
=Y s, if ¢s<0, 0<s<m-—1,

s=0

where (n,g) = 1.
Proof. If we take (n,g) =1 in Theorem 1, then k¥ = n and

- [E5n] - [E )

m=0s=0 s=0 m=0

2

1Crn.q

Let Hy ={s—mg:0<m<mn-—1and (n,g)=1}. Then
0<s<n—1

H, =1{0,1,....n—1}

0<s<n—1
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and
n—1 n—1
E Cs—mg = § Ct
m=0 t=0

under mod n. Thus

n—1 n—1 % n—1 2 %
||cn,g||2:[zcszct] _ (Z) _
s=0

s=0 t=0

n—1 n—1
>_es| =D lesl-
s=0 s=0

This completes the proof. ([

Example 2. Let (n,g) = 1. If we take firstly ¢; = F; and secondly ¢; = L; in
Theorem 2, we have by (2.1)

||Cn7g(FO)||2 = LIn41 — 1
and by (2.2)
”C"»!J(LO)Hz =Lpy1— 1

The our equalities in Example 2 have also been given as Theorem 3.1 and
Theorem 3.2 in [24].
4. Determinants of C,, 4(F1) and C, 4(L1)
Theorem 3. The determinant of Cy, 4(F1) holds

0, if (n,g)#1,
det Cn,g(Fl) =

n—1 1-F k—1 )
(1_Fn+1)n_1+Fr?_22Fk (Fi:frl) ) Zf (nag) =1L
k=1
Proof. From (1.3), we write
On,g(Fl) = Qn,gcn,l(Fl)-

Then, we have
det G, 4(F1) = det Qp g det Cp, 1 (F1),

where )
_ 10, if (ng)#1,
det Qn g = { 1, if (n,g)=1.
By Lemma 1, the proof is completed. O
Theorem 4. The determinant of C, 4(L1) holds
07 Zf (n? g) % ]"
n—1 1-L k—1
det Gy 4(L1) = (1= Lp)" ™"+ (L — 2)7%22(1:“2 —3Lk41) (ﬁ) )
o1 n

if (n’g) =1L

Proof. By using Lemma 3 and the method of the proof of Theorem 3, the
statement of theorem is proved easily. (I
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5. Inverses of C, 4(F1) and C, 4(L1)

The matrices C), 4(F1) and C, 4(L1) are not invertible when (n,g) # 1,
because their determinants are zero. Consequently, in this section we compute
inverses of the matrices Cy, 4(F1) and C,, 4(L1) under the condition (n,g) = 1.

Theorem 5. Let f;’s be as in (2.3) and

My,4(F)

n

fl [g-Cire(fos fats fuzs s 1)

Then, for n > 2
[Crg (FOI ™! = (Mo g(F))"

where (Mn’g(F))T is transpose of M, 4(F').
Proof. By (1.3) and (1.4), we have
Cn,g(Fl) = Qn,gcn,l(Fl)

and

(Qn,g)il = (Qn,g)T'
Thus

51 Cn 0 = Coa (B 1@l = Qs (1Coatr ) ]
From Lemma 2,

[Coa(F1)] 7 = %Circ(fo,fl,...,fn_l).
Then

(CnaFI ™) = - Cinclos frm fusse o o)

T
From (1.3), Qn.4 ([C’nyl(Fl )]_1) is a g-circulant matrix and thus the first row

. A
of the matrix Qn 4 ([Cn,l(Fl)} ) 15

fin(foy Jn1, fne2,.. 05 f1)-
Thus,
T
(5.2) Moy (F) = Quy (ICna(F1)] )

By (5.1) and (5.2), we have
[Cn,g(Fl)]il = (Mn,g(F))T~ g
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Theorem 6. Let [;’s be as in (2.4) and

1 .
Mmg(L) = T [g—ClI‘C(l(), ln—17 ln_g, ey ll)] .

Then,
[Crg(L1)] " = (Mg (D))"
where (Mmg(L))T is transpose of My 4(L).

Proof. The proof is completed easily by considering Lemma 4 and by using the
method of the proof of Theorem 5. O

6. Conclusion

In this paper, we have dealt with the spectral norm of g-circulant matrix
Ch.g = g-Circ(cop, c1, ..., cn_1), where ¢; > 0 or ¢; < 0 (equivalently ¢; -¢; > 0).
Also, we have computed the spectral norms, determinants and inverses of the
g-circulant matrices with the Fibonacci and Lucas numbers by using results of
the paper [16].
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