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ON THE g-CIRCULANT MATRICES

Mustafa Bahşi and Süleyman Solak

Abstract. In this paper, firstly we compute the spectral norm of g-

circulant matrices Cn,g = g-Circ(c0, c1, . . . , cn−1), where ci ≥ 0 or ci ≤ 0

(equivalently ci · cj ≥ 0). After, we compute the spectral norms, deter-
minants and inverses of the g-circulant matrices with the Fibonacci and

Lucas numbers.

1. Introduction

An n× n matrix C is called a circulant matrix if it is of the form

C =


c0 c1 · · · cn−1

cn−1

cn−2

c0
cn−1

· · ·
. . .

cn−2

cn−3

...
...

...
c1 c2 · · · c0


or an n×n matrix C is circulant if there exist c0, c1, . . . , cn−1 such that the i,j
entry of C is ci−j modn, where the rows and columns are numbered from 0 to
n− 1 and kmodn means the number between 0 to n− 1 that is congruent to
kmodn . Thus, we denote the circulant matrix C as C = Circ(c0, c1, . . . , cn−1).

An n× n matrix Cg is called a g-circulant matrix if it is of the form

(1.1) Cg =


c0 c1 · · · cn−1

cn−g

cn−2g

cn−g+1

cn−2g+1

· · ·
. . .

cn−g−1

cn−2g−1

...
...

...
cg cg+1 · · · cg−1

 ,
where g is a nonnegative integer. The entries of the matrix Cg are characterized

by the rule Cg = [c(i−jg) modn]n−1
i,j=0. Also, the matrix Cg is determined by its

first row elements and the parameter g, that is, its (j + 1)th row is obtained
by giving its jth row a right circular shift by g positions. Thus, we denote the
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696 M. BAHŞI AND S. SOLAK

g-circulant matrix Cg as Cg = g-Circ(c0, c1, . . . , cn−1). When we take g = 1,
the matrix Cg = Circ(c0, c1, . . . , cn−1) is an ordinary circulant matrix (briefly,
circulant matrix). Any circulant matrix and g-circulant matrix has many in-
teresting properties. Some of them are [8]:

1. Let A be n× n. Then A is a circulant if and only if

Aπ = πA,

where the matrix π = Circ(0, 1, 0, . . . , 0).
2. Circ(c0, c1, . . . , cn−1) = c0I + c1π + · · ·+ cn−1π

n−1.
3. All circulants of the same order commute. If C is a circulant so is C∗.

Hence C and C∗ commute and therefore all circulants are normal matrices,
where C∗ is conjugate transpose of C.

4. A is a g-circulant matrix if and only if Aπ = πAg.
5. Let A be a nonsingular g-circulant matrix. Then A−1 is a g−1-circulant.
6. If the n× n matrices A, C and Q are of the forms A = g-Circ(a0, a1, . . .,

an−1), C = Circ(c0, c1, . . . , cn−1) and Q = g-Circ (1, 0, 0, . . . , 0), then

(1.2) AA∗ is a circulant matrix,

(1.3) A = QC,

and for (n, g) = 1,

(1.4) Q−1 = Q∗ (Q is unitary).

For more introduction and algebraic properties of circulant (or g-circulant)
matrices, please refer to the classical book by Davis [8].

The g-circulant matrices play important roles in physics, signal and image
processing, statistics, coding theory and so on. There are lots of articles con-
cerning the determinants, inverses, spectral norms and many applications of
circulant (or g-circulant) matrices [2, 4–7, 9, 10, 13, 14, 16–18, 22–24]. Solak
[17, 18] has presented some bounds for the spectral and Euclidean norms of
circulant matrices with the Fibonacci and Lucas numbers. Shen et al. [16] have
computed the determinants and inverses of circulant matrices with Fibonacci
and Lucas numbers. Similarly, Bozkurt and Tam [7] have computed the de-
terminants and inverses of circulant matrices with Jacobsthal and Jacobsthal–
Lucas Numbers. Ngongiep [14] has showed the singular values of g-circulants.
Zhou and Jiang [24] have derived explicit expressions of spectral norms for cer-
tain of g-circulant matrices with classical Fibonacci and Lucas numbers entries
when (n, g) = 1. In this paper, we study some properties of g-circulant matrices
with the Fibonacci and Lucas numbers when (n, g) = 1 and (n, g) 6= 1.

The main contents of this paper are organized as follows: In Section 2, we
give some preliminaries, definitions and lemmas related to our study. In Section
3, firstly we compute the spectral norm of g-circulant matrix with all entries are
nonnegative or nonpositive. Secondly, we give some special cases of our results
including Fibonacci and Lucas numbers. In Sections 4 and 5, we compute
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determinants and inverses of the g-circulant matrices with the Fibonacci and
Lucas numbers by using results of the paper [16].

2. Preliminaries

The sequences of the Fibonacci numbers are one of the most well-known
sequences, and it has many applications to different fields such as mathematics,
statistics and physics. The Fibonacci numbers are defined by the second order
linear recurrence relation: Fn+1 = Fn + Fn−1 (n ≥ 1), F0 = 0 and F1 =
1. Similarly, the Lucas numbers are defined by Ln+1 = Ln + Ln−1 (n ≥ 1),
L0 = 2 and L1 = 1. Let α and β be the roots of the characteristic equation
x2 − x− 1 = 0, then the Binet formulas of Fn and Ln are [16]:

Fn =
αn − βn

α− β
, Ln = αn + βn.

The Fibonacci and Lucas numbers and their generalized forms have many
applications in matrices and have many interesting identities [1, 3, 7, 9, 11, 12,
15–21]. Two of them are:

(2.1)

n−1∑
s=0

Fs = Fn+1 − 1,

and

(2.2)

n−1∑
s=0

Ls = Ln+1 − 1.

Definition 1. Let A = (aij) be any m× n matrix. The spectral norm of A is

‖A‖2 =
√

max
i
λi (A∗A),

where λi (A∗A) are eigenvalues of A∗A and A∗ is conjugate transpose of A.

Lemma 1 ([16]). Let An = Circ(F1, F2, . . . , Fn) be a circulant matrix. Then
we have

detAn = (1− Fn+1)n−1 + Fn−2
n

n−1∑
k=1

Fk

(
1− Fn+1

Fn

)k−1

.

Lemma 2 ([16]). Let An = Circ(F1, F2, . . . , Fn) (n > 2) be a circulant matrix.
Then we have

A−1
n =

1

fn
Circ(f0, f1, f2, . . . , fn−1),
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where

(2.3) fs =



1 +
n−2∑
i=1

Fn−iF
i−1
n

(F1−Fn+1)i , if s = 0,

−1 +
n−2∑
i=1

Fn−1−iF
i−1
n

(F1−Fn+1)i , if s = 1,

− F s−2
n

(F1−Fn+1)s−1 , if 2 ≤ s ≤ n− 1,

F1 − Fn +
n−2∑
i=1

Fi

(
Fn

F1−Fn+1

)n−i−1

, if s = n.

Lemma 3 ([16]). Let Bn = Circ(L1, L2, . . . , Ln) be a circulant matrix. Then
we have

detBn = (1− Ln+1)n−1 + (Ln − 2)n−2
n−1∑
k=1

(Lk+2 − 3Lk+1)

(
1− Ln+1

Ln − 2

)k−1

.

Lemma 4 ([16]). Let Bn = Circ(L1, L2, . . . , Ln) be a circulant matrix. Then
we have

(2.4) B−1
n =

1

ln
Circ(l0, l1, l2, . . . , ln−1),

where

ls =



1 +
n−2∑
i=1

(Ln+2−i−3Ln+1−i)(Ln−2)i−1

(L1−Ln+1)i
, if s = 0,

−3 +
n−2∑
i=1

(Ln+1−i−3Ln−i)(Ln−2)i−1

(L1−Ln+1)i
, if s = 1,

− 5(Ln−2)s−2

(L1−Ln+1)s−1 , if 2 ≤ s ≤ n− 1,

L1 − 3Ln +
n−2∑
i=1

(Li+2 − 3Li+1)
(

Ln−2
L1−Ln+1

)n−i−1

, if s = n.

Throughout this paper the n × n matrices Cn,g, Cn,1, Cn,g(F ), Cn,g(L),
Cn,1(F ), Cn,1(L) and Qn,g denote the following matrices:

Cn,g = g-Circ(c0, c1, . . . , cn−1),

Cn,1 = Circ(c0, c1, . . . , cn−1),

Cn,g(Fs) = g-Circ(Fs, Fs+1, . . . , Fs+n−1),

Cn,1(Fs) = Circ(Fs, Fs+1, . . . , Fs+n−1),

Cn,g(Ls) = g-Circ(Ls, Ls+1, . . . , Ls+n−1),

Cn,1(Ls) = Circ(Ls, Ls+1, . . . , Ls+n−1)

and
Qn,g = g-Circ (1, 0, . . . , 0) ,
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where ci ≥ 0 or ci ≤ 0 (equivalently ci.cj ≥ 0) (i, j = 0, 1, . . . , n− 1) , Fn and
Ln denote the nth Fibonacci and Lucas numbers, respectively. Also, [n, g]
and (n, g) denote the least common multiple of n, g and the greatest common
divisor of n, g, respectively.

3. The spectral norm

Theorem 1. The spectral norm of the matrix Cn,g holds

‖Cn,g‖2 =

[
(n, g)

k−1∑
m=0

n−1∑
s=0

cscs−mg

] 1
2

,

where k = [n,g]
g .

Proof. From (1.2), the matrix Cn,gC
∗
n,g is a circulant matrix. If the first row

of Cn,gC
∗
n,g is (a0, a1, . . . , an−1) , then

Cn,gC
∗
n,g =


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

...
a1 a2 · · · a0



=


c0 c1 · · · cn−1

cn−g cn−g+1 . . . cn−g−1

...
...

...
cg cg+1 · · · cg−1




c0 cn−g · · · cg
c1 cn−g+1 . . . cg+1

...
...

...
cn−1 cn−g−1 · · · cg−1

 .
From matrix multiplication, we obtain

(3.1) ai
0≤i≤n−1

=

n−1∑
s=0

cscs−ig.

Since c[s−(pk+j)g] = c(s−jg) under modn, we have aj = apk+j , where k = [n,g]
g ,

j = 0, 1, . . . , k − 1, p = 0, 1, . . . , nk − 1. Then, for every j = 0, 1, . . . , k − 1,
aj(equivalently the block (a0, a1, . . . , ak−1)) is repeated n

k times in the row
(a0, a1, . . . , an−1) . Thus, the first row of Cn,gC

∗
n,g isa0, a1, . . . , ak−1︸ ︷︷ ︸

1

, a0, a1, . . . , ak−1︸ ︷︷ ︸
2

, . . . , a0, a1, . . . , ak−1︸ ︷︷ ︸
n
k

 .

Since the circulant matrix Cn,gC
∗
n,g is normal, its spectral norm is equal to its

spectral radius. Furthermore, by considering Cn,gC
∗
n,g is irreducible and its

entries are nonnegative, we have that the spectral radius (or spectral norm) of
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the matrix Cn,gC
∗
n,g is equal to its Perron root. We select an n-dimensional

column vector v = (1, 1,. . . , 1)T , then by (3.1)

[
Cn,gC

∗
n,g

]
v =

(
n−1∑
i=0

ai

)
v =

(
n

k

k−1∑
m=0

am

)
v =

(
n

k

k−1∑
m=0

n−1∑
s=0

cscs−mg

)
v.

Obviously, n
k

k−1∑
m=0

n−1∑
s=0

cscs−mg is an eigenvalue of Cn,gC
∗
n,g associated with v and

it is the Perron root of Cn,gC
∗
n,g. Hence

∥∥Cn,gC
∗
n,g

∥∥
2

=
n

k

k−1∑
m=0

n−1∑
s=0

cscs−mg.

Finally, from the equalities ‖Cn,g‖22 =
∥∥Cn,gC

∗
n,g

∥∥
2

and n
k = (n, g), ‖Cn,g‖2

holds

‖Cn,g‖2 =

[
(n, g)

k−1∑
m=0

n−1∑
s=0

cscs−mg

] 1
2

.
�

Example 1. If we take firstly ci = Fi and secondly ci = Li in Theorem 1, we
have

‖Cn,g(F0)‖2 =

[
(n, g)

k−1∑
m=0

n−1∑
s=0

FsFs−mg

] 1
2

and

‖Cn,g(L0)‖2 =

[
(n, g)

k−1∑
m=0

n−1∑
s=0

LsLs−mg

] 1
2

.

Theorem 2. The spectral norm of the matrix Cn,g holds

‖Cn,g‖2 =


n−1∑
s=0

cs, if cs ≥ 0, 0 ≤ s ≤ n− 1,

−
n−1∑
s=0

cs, if cs ≤ 0, 0 ≤ s ≤ n− 1,

where (n, g) = 1.

Proof. If we take (n, g) = 1 in Theorem 1, then k = n and

‖Cn,g‖2 =

[
n−1∑
m=0

n−1∑
s=0

cscs−mg

] 1
2

=

[
n−1∑
s=0

cs

n−1∑
m=0

cs−mg

] 1
2

.

Let Hs
0≤s≤n−1

= {s−mg : 0 ≤ m ≤ n− 1 and (n, g) = 1} . Then

Hs
0≤s≤n−1

= {0, 1, . . . , n− 1}
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and
n−1∑
m=0

cs−mg =

n−1∑
t=0

ct

under modn. Thus

‖Cn,g‖2 =

[
n−1∑
s=0

cs

n−1∑
t=0

ct

] 1
2

=

(n−1∑
s=0

cs

)2
 1

2

=

∣∣∣∣∣
n−1∑
s=0

cs

∣∣∣∣∣ =

n−1∑
s=0

|cs| .

This completes the proof. �

Example 2. Let (n, g) = 1. If we take firstly ci = Fi and secondly ci = Li in
Theorem 2, we have by (2.1)

‖Cn,g(F0)‖2 = Fn+1 − 1

and by (2.2)
‖Cn,g(L0)‖2 = Ln+1 − 1.

The our equalities in Example 2 have also been given as Theorem 3.1 and
Theorem 3.2 in [24].

4. Determinants of Cn,g(F1) and Cn,g(L1)

Theorem 3. The determinant of Cn,g(F1) holds

detCn,g(F1) =


0, if (n, g) 6= 1,

(1−Fn+1)n−1 + Fn−2
n

n−1∑
k=1

Fk

(
1−Fn+1

Fn

)k−1

, if (n, g) = 1.

Proof. From (1.3), we write

Cn,g(F1) = Qn,gCn,1(F1).

Then, we have
detCn,g(F1) = detQn,g detCn,1(F1),

where

detQn,g =

{
0, if (n, g) 6= 1,
1, if (n, g) = 1.

By Lemma 1, the proof is completed. �

Theorem 4. The determinant of Cn,g(L1) holds

detCn,g(L1) =


0, if (n, g) 6= 1,

(1− Ln+1)n−1 + (Ln − 2)n−2
n−1∑
k=1

(Lk+2 − 3Lk+1)

(
1− Ln+1

Ln − 2

)k−1

,

if (n, g) = 1.

Proof. By using Lemma 3 and the method of the proof of Theorem 3, the
statement of theorem is proved easily. �
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5. Inverses of Cn,g(F1) and Cn,g(L1)

The matrices Cn,g(F1) and Cn,g(L1) are not invertible when (n, g) 6= 1,
because their determinants are zero. Consequently, in this section we compute
inverses of the matrices Cn,g(F1) and Cn,g(L1) under the condition (n, g) = 1.

Theorem 5. Let fi’s be as in (2.3) and

Mn,g(F ) =
1

fn
[g-Circ(f0, fn−1, fn−2, . . . , f1)] .

Then, for n > 2

[Cn,g(F1)]
−1

= (Mn,g(F ))
T
,

where (Mn,g(F ))
T
is transpose of Mn,g(F ).

Proof. By (1.3) and (1.4), we have

Cn,g(F1) = Qn,gCn,1(F1)

and

(Qn,g)
−1

= (Qn,g)
T
.

Thus

(5.1) [Cn,g(F1)]
−1

= [Cn,1(F1)]
−1

[Qn,g]
T

=

[
Qn,g

(
[Cn,1(F1)]

−1
)T]T

.

From Lemma 2,

[Cn,1(F1)]
−1

=
1

fn
Circ(f0, f1, . . . , fn−1).

Then (
[Cn,1(F1)]

−1
)T

=
1

fn
Circ(f0, fn−1, fn−2, . . . , f1).

From (1.3), Qn,g

(
[Cn,1(F1)]

−1
)T

is a g-circulant matrix and thus the first row

of the matrix Qn,g

(
[Cn,1(F1)]

−1
)T

is

1

fn
(f0, fn−1, fn−2, . . . , f1).

Thus,

(5.2) Mn,g(F ) = Qn,g

(
[Cn,1(F1)]

−1
)T

.

By (5.1) and (5.2), we have

[Cn,g(F1)]
−1

= (Mn,g(F ))
T
. �
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Theorem 6. Let li’s be as in (2.4) and

Mn,g(L) =
1

ln
[g-Circ(l0, ln−1, ln−2, . . . , l1)] .

Then,

[Cn,g(L1)]
−1

= (Mn,g(L))
T
,

where (Mn,g(L))
T
is transpose of Mn,g(L).

Proof. The proof is completed easily by considering Lemma 4 and by using the
method of the proof of Theorem 5. �

6. Conclusion

In this paper, we have dealt with the spectral norm of g-circulant matrix
Cn,g = g-Circ(c0, c1, . . . , cn−1), where ci ≥ 0 or ci ≤ 0 (equivalently ci · cj ≥ 0).
Also, we have computed the spectral norms, determinants and inverses of the
g-circulant matrices with the Fibonacci and Lucas numbers by using results of
the paper [16].
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