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Abstract. The subject of fractional calculus (that is, the calculus of integrals and deriva-

tives of any arbitrary real or complex order) has gained considerable popularity and im-

portance during the past over four decades, due mainly to its demonstrated applications

in numerous seemingly diverse and widespread fields of mathematical, physical, engineer-

ing and statistical sciences. Various operators of fractional-order derivatives as well as

fractional-order integrals do indeed provide several potentially useful tools for solving dif-

ferential and integral equations, and various other problems involving special functions

of mathematical physics as well as their extensions and generalizations in one and more

variables. The main object of this survey-cum-expository article is to present a brief ele-

mentary and introductory overview of the theory of the integral and derivative operators

of fractional calculus and their applications especially in developing solutions of certain

interesting families of ordinary and partial fractional “differintegral” equations. This gen-

eral talk will be presented as simply as possible keeping the likelihood of non-specialist

audience in mind.
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1. Introduction, Notations and Preliminaries

Throughout this presentation, we denote by C, R, R+, Z−
0 , and N the sets of

complex numbers, real numbers, real and positive numbers, non-positive integers,
and positive integers, respectively.

Fractional calculus, the differentiation and integration of arbitrary (real or
complex) order, arises naturally in various areas of science and engineering. For
example, very recently, Wang and Zhang [104] investigated a class of nonlinear
fractional-order differential impulsive systems with the Hadamard derivative (see
also [103, 105, 112]).

The concept of fractional calculus (that is, calculus of integrals and derivatives
of any arbitrary real or complex order) seems to have stemmed from a question
raised in the year 1695 by Marquis de l’Hôpital (1661–1704) to Gottfried Wilhelm
Leibniz (1646–1716), which sought the meaning of Leibniz’s (currently popular)
notation

dny

dxn

for the derivative of order n ∈ N0 := {0, 1, 2, ...} when n = 1
2 (What if n = 1

2?). In
his reply, dated 30 September 1695, Leibniz wrote to l’Hôpital as follows:

“... This is an apparent paradox from which, one day, useful con-
sequences will be drawn. ...”

Subsequent mention of fractional derivatives was made, in some context or
the other, by (for example) Euler in 1730, Lagrange in 1772, Laplace in 1812,
Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in 1847, Greer in
1859, Holmgren in 1865, Grünwald in 1867, Letnikov in 1868, Laurent in 1884,
Nekrassov in 1888, Krug in 1890, and Weyl in 1917. In fact, in his 700-page
textbook, entitled “Traité du Calcul Différentiel et du Calcul Intégral” (Second
edition; Courcier, Paris, 1819), S. F. Lacroix devoted two pages (pp. 409-410) to
fractional calculus, showing eventually that

d
1
2

dv
1
2

v =
2
√
v√
π
.

In addition, of course, to the theories of differential, integral, and integro-
differential equations, and special functions of mathematical physics as well as their
extensions and generalizations in one and more variables, some of the areas of
present-day applications of fractional calculus include
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1. Fluid Flow
2. Rheology
3. Dynamical Processes in Self-Similar and Porous Structures
4. Diffusive Transport Akin to Diffusion
5. Electrical Networks
6. Probability and Statistics
7. Control Theory
8. Viscoelasticity
9. Electrochemistry of Corrosion

10. Chemical Physics
11. Dynamical Systems
12. Mathematical Bio-Sciences

and so on (see, for details, [64, 27, 31]).
The very first work, devoted exclusively to the subject of fractional calcu-

lus, is the book by Oldham and Spanier [63]; it was published in the year 1974.
Ever since then a significantly large number of books and monographs, edited vol-
umes, and conference proceedings have appeared and continue to appear rather
frequently. And, today, there exist at least eight international scientific research
journals which are devoted almost entirely to the subject of fractional calculus and
its widespread applications.

2. The Riemann-Liouville and Weyl Operators of Fractional Calculus

We begin by defining the linear integral operators I and K by

(2.1) (If) (x) :=

∫ x

0

f (t) dt

and

(2.2) (Kf) (x) :=

∫ ∞

x

f (t) dt,

respectively. Then it is easily seen by iteration (and the principle of mathematical
induction) that

(2.3) (Inf) (x) =
1

(n− 1)!

∫ x

0

(x− t)
n−1

f (t) dt (n ∈ N)

and

(2.4) (Knf) (x) =
1

(n− 1)!

∫ ∞

x

(t− x)
n−1

f (t) dt (n ∈ N) ,

where, just as elsewhere in this presentation,

N := {1, 2, 3, · · · } = N0 \ {0} (N0 := {0, 1, 2, · · · })
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and

Z := {0,±1,±2, · · · } = N∪Z−
0 and Z−

0 := Z−∪{0}
(
Z− := {−1,−2,−3, · · · }

)
.

The familiar (Euler’s) Gamma function Γ(z) which is defined, for z ∈ C \ Z−
0 ,

by

Γ(z) =



∫ ∞

0

e−t tz−1 dt
(
R(z) > 0

)
Γ(z + n)

n−1∏
j=0

(z + j)

(
z ∈ C \ Z−

0 ; n ∈ N
)

happens to be one of the most fundamental and the most useful special functions
of mathematical analysis. It emerged essentially from an attempt by Euler to give
a meaning to x! when x is any positive real number, who in 1729 undertook the
problem of interpolating n! between the positive integer values of n.

Historically, the origin of the above-defined Gamma function Γ(z) can be traced
back to two letters from Leonhard Euler (1707–1783) to Christian Goldbach (1690–
1764), elaborating upon a simple desire to extend the factorials to values between
the integers. The first letter (dated October 13, 1729) dealt with the interpolation
problem, while the second letter (dated January 8, 1730) dealt with integration and
tied the contents of the two letters together.

Thus, since

Γ(1) = 1 and Γ(z + 1) = zΓ(z) (z ∈ C \ Z−
0 )

so that, obviously,

Γ(n) = (n− 1)(n− 2)(n− 3) · · · 3 · 2 · 1 · Γ(1) =: (n− 1)! (n ∈ N),

with a view to interpolating (n− 1)! between the positive integer values of n, one
can set

(2.5) (n− 1)! = Γ (n)

in terms of the Gamma function. Thus, in general, Equations (2.3) and (2.4) would
lead us eventually to the familiar Riemann-Liouville operator Rµ and the Weyl
operator Wµ of fractional integral of order µ (µ ∈ C) , defined by (cf., e.g., Erdélyi
et al. [19, Chapter 13])

(2.6) (Rµf) (x) :=
1

Γ (µ)

∫ x

0

(x− t)
µ−1

f (t) dt
(
R (µ) > 0

)
and

(2.7) (Wµf) (x) :=
1

Γ (µ)

∫ ∞

x

(t− x)
µ−1

f (t) dt
(
R (µ) > 0

)
,
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respectively, it being tacitly assumed that the function f (t) is so constrained that
the integrals in (2.6) and (2.7) exist.

In the remarkably vast literature on fractional calculus and its fairly widespread
applications, there are potentially useful operators of fractional derivatives Dµ

x;0 and
Dµ

x;∞ of order µ (µ ∈ C), which correspond to the above-defined fractional integral
operators Rµ and Wµ, respectively, and we have

(2.8)
(
D

µ
x;0f

)
(x) :=

dm

dxm
(
Rm−µf

)
(x)

(
m− 1 5 R (µ) < m; m ∈ N

)
and

(2.9)
(
Dµ

x;∞f
)
(x) :=

dm

dxm
(
Wm−µf

)
(x)

(
m− 1 5 R (µ) < m; m ∈ N

)
.

There also exist, in the considerably extensive literature on the theory and
applications of fractional calculus, numerous further extensions and generalizations
of the operators Rµ,Wµ, Dµ

x;0, and Dµ
x;∞, each of which we have chosen to introduce

here for the sake of the non-specialists in this subject.
Now, for the Riemann-Liouville fractional derivative operator D

µ
x;0 defined by

(2.8), it is easily seen from (2.6) that

(2.10) D
µ
x;0

{
xλ
}
=

Γ (λ+ 1)

Γ (λ− µ+ 1)
xλ−µ

(
ℜ (λ) > −1

)
.

Thus, upon setting λ = 1 and µ = 1
2 , this last formula (2.10) readily yields

(2.11) D
1
2
x;0 {x} =

Γ (2)

Γ
(
3
2

) x 1
2 .

Observing that

Γ(2) = 1 · Γ(1) = 1 and Γ

(
3

2

)
=

1

2
· Γ
(
1

2

)
=

√
π

2
,

since

Γ

(
1

2

)
=

√
π,

the fractional derivative formula (2.10) assumes the following simple form:

(2.12) D
1
2
x;0 {x} =

2
√
x√
π
.
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In fact, it is the fractional derivative formula (2.12) in its equivalent form:

d
1
2

dv
1
2

v =
2
√
v√
π
,

which was derived in two pages (pp. 409–410) by S. F. Lacroix in his 700-page
textbook, entitled “Traité du Calcul Différentiel et du Calcul Intégral” (Second
edition; Courcier, Paris, 1819).

3. Initial-Value Problems Based Upon Fractional Calculus

If we define, as usual, the Laplace transform operator L by

(3.1) L {f (t) : s} :=

∫ ∞

0

e−stf (t) dt =: F (s) ,

provided that the integral exists, for the Riemann-Liouville fractional derivative
operator Dµ

t;0 of order µ, we have

(3.2a) L
{(

D
µ
t;0 f

)
(t) : s

}
= sµF (s)−

n−1∑
k=0

sk
(
D

µ−k−1
t;0

)
f (t)

∣∣∣∣∣
t=0(

n− 1 5 R (µ) < n; n ∈ N
)
.

On the other hand, for the nth ordinary derivative f (n)(t) (n ∈ N0), it is well
known that

(3.2b) L
{
f (n)(t) : s

}
= snF (s)−

n−1∑
k=0

sk f (n−k−1) (t)

∣∣∣∣∣
t=0

(n ∈ N0)

or, equivalently,

(3.2c) L
{
f (n)(t) : s

}
= snF (s)−

n−1∑
k=0

sn−k−1 f (k) (0+) (n ∈ N0),

where, and in what follows, an empty sum is to be interpreted as nil.
Upon comparing the Laplace transform formulas (3.2a) and (3.2b), we see that

such initial values as those occurring in (3.2a) are usually not interpretable physi-
cally in a given initial-value problem. This situation is overcome at least partially
by making use of the so-called Liouville-Caputo fractional derivative which was in-
troduced in the earlier work published in 1832 by Joseph Liouville (1809-1882) [49,
p. 10] and which arose recently in several important works, dated 1969 onwards,
by Michele Caputo (see, for details, [64, p. 78 et seq.]; see also [31, p. 90 et seq.]).

In many recent works, especially in the theory of viscoelasticity and in hereditary
solid mechanics, the following definition of Liouville (1832) and Caputo (1969) is
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adopted for the fractional derivative of order α > 0 of a causal function f (t) (i.e.,
f (t) = 0 for t < 0):

(3.3)
dα

dtα
f (t) :=


f (n) (t) (α = n ∈ N0)

1

Γ (n− α)

∫ t

0

f (n) (τ)

(t− τ)
α−n+1 dτ (n− 1 < α < n; n ∈ N) ,

where f (n) (t) denotes the usual (ordinary) derivative of order n and Γ is the Gamma
function occurring already in (2.6) and (2.7). One can apply the above notion
in order to generalize some basic topics of classical mathematical physics, which
are treated by simple, linear, ordinary or partial, differential equations, since [cf.
Equation (3.2a) and Definition (3.3)]
(3.4)

L

{
dα

dtα
f (t) : s

}
= sαF (s)−

n−1∑
k=0

sα−k−1f (k) (0+) (n− 1 < α 5 n; n ∈ N0) ,

which, just as the Laplace transform formulas (3.2b) or (3.2c), is obviously more
suited for initial-value problems than the Laplace transform formula (3.2a). See,
for details, Gorenflo et al. [24], Podlubny [64] and Kilbas et al. [31].

In the theory of ordinary differential equations, the following first- and second-
order differential equations:

dy

dt
+ cy = 0 (c > 0) and

d2y

dt2
+ cy = 0 (c > 0)

are usually referred to as the relaxation equation and the oscillation equation, re-
spectively. On the other hand, in the theory of partial differential equations, the
following partial differential equations:

∂2u

∂x2
= k

∂u

∂t
(k > 0) and

∂2u

∂x2
= k

∂2u

∂t2
(k > 0)

are known as the diffusion (or heat) equation and the wave equation, respectively.
The basic processes of relaxation, diffusion, oscillations and wave propagation

have been generalized by several authors by introducing fractional derivatives in the
governing (ordinary or partial) differential equations. This leads to superslow or
intermediate processes that, in mathematical physics, we may refer to as fractional
phenomena. Our analysis of each of these phenomena, carried out by means of
fractional calculus and Laplace transforms, leads to certain special functions in one
variable of Mittag-Leffler and Fox-Wright types. These useful special functions
are investigated systematically as relevant cases of the general class of functions
which are popularly known as Fox’s H-function after Charles Fox (1897-1977) who
initiated a detailed study of these functions as symmetrical Fourier kernels (see, for
details, Srivastava et al. [87, 88]).
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We choose to summarize below some recent investigations by Gorenflo et al.
[24] who did indeed make references to numerous earlier closely-related works on
this subject.

I. The Fractional (Relaxation-Oscillation) Ordinary Differential Equation

dαu

dtα
+ cα u (t;α) = 0(3.5)

(c > 0; 0 < α 5 2)

Case I.1: Fractional Relaxation (0 < α 5 1)

Initial Condition: u (0+;α) = u0

Case I.2: Fractional Oscillation (1 < α 5 2)

Initial Conditions: u (0+;α) = u0

u̇ (0+;α) = v0

with v0 ≡ 0 for continuous dependence of the solution on the parameter α also in
the transition from α = 1− to α = 1+.

Explicit Solution (in both cases):

u (t;α) = u0 Eα

(
− (ct)

α )
= u0

∞∑
n=0

(−1)n

Γ(αn+ 1)
(ct)αn

=


u0

(
1− (ct)α

Γ(1 + α)

)
≈ u0 exp

(
− (ct)α

Γ(1 + α)

)
(t→ 0+)

u0
(ct)αΓ(1− α)

(t→ ∞),

where Eα (z) denotes the familiar Mittag-Leffler function defined by (cf., e.g., Sri-
vastava and Kashyap [88, p. 42, Equation II.5 (23)])

Eα (z) :=
∞∑

n=0

zn

Γ (αn+ 1)
=

1

2πi

∫ (0+)

−∞

ζα−1eζ

ζα − z
dζ

(α > 0; z ∈ C) .
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II. The Fractional (Diffusion-Wave) Partial Differential Equation

∂2βu

∂t2β
= k

∂2u

∂x2
(3.6)

(k > 0; −∞ < x <∞; 0 < β 5 1) ,

where u = u (x, t;β) is assumed to be a causal function of time (t > 0) with

u (∓∞, t;β) = 0.

Case II.1: Fractional Diffusion
(
0 < β 5 1

2

)
Initial Condition: u (x, 0+;β) = f (x)

Case II.2: Fractional Wave
(
1
2 < β 5 1

)
Initial Conditions: u (x, 0+;β) = f (x)

u̇ (x, 0+;β) = g (x)

with g (x) ≡ 0 for continuous dependence of the solution on the parameter β also
in the transition from β = 1

2− to β = 1
2+.

Explicit Solution (in both cases):

(3.7) u (x, t;β) =

∫ ∞

−∞
Gc (ξ, t;β) f (x− ξ) dξ,

where the Green function Gc (x, t;β) is given by

(3.8) |x|Gc (x, t;β) =
z

2

∞∑
n=0

(−z)n

n!Γ (1− β − βn)

(
z =

|x|√
ktβ

; 0 < β < 1

)
,

which can readily be expressed in terms of Wright’s (generalized Bessel) function
Jµ
ν (z) defined by (cf., e.g., Srivastava and Kashyap [89, p. 42, Equation II.5(22)])

(3.9) Jµ
ν (z) :=

∞∑
n=0

(−z)n

n!Γ (1 + ν + µn)
.
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4. Fractional Kinetic Equations

During the past several years, fractional kinetic equations of different forms have
been widely used in describing and solving several important problems of physics
and astrophysics. Saxena et al. [75] introduced the solution of the generalized
fractional kinetic equation associated with the generalized Mittag-Leffler function.
Subsequently, Saxena et al. [78] developed an alternative derivation of the gener-
alized fractional kinetic equations in terms of special functions with the Sumudu
transform. More recently, Kumar et al. [37] gave the solution of a generalized
fractional kinetic equation involving the Bessel function of the first kind; Choi and
Kumar [17] (see also [35]) presented the solution of the generalized fractional ki-
netic equations involving the Aleph function. In fact, as observed recently by V. P.
Saxena [71], the so-called Aleph function (which was claimed to be a generalization
of the familiar I-function) is a redundant variant of the I-function itself. The I-
function does indeed provide a generalization of Fox’s H-function (see, for details,
[20]; see also [11] for the closely-related H-function). For other results involving
various classes of fractional kinetic equations and their solutions, one may refer to
such works as (for example) [15, 26, 34, 68, 73, 74, 75, 76, 78, 97]. In particular,
Tomovski et al. [97] presented the corrected version of an obviously erroneous solu-
tion of a certain fractional kinetic equation which was given by Saxena and Kalla
[73, p. 508, Eq. (3.2)] and also derived the solution of a much more general family
of fractional kinetic equations (see, for details, [97, p. 813, Remark 3 and Theorem
10]).

Here, in this presentation, we propose to investigate solution of a certain gen-
eralized fractional kinetic equation associated with the generalized Mittag-Leffler
function (see [72]). It is also pointed out that the result presented here is general
enough to be specialized to include many known solutions for fractional kinetic
equations.

Fractional kinetic equations have gained popularity during the past decade or so
due mainly to the discovery of their relation with the theory of CTRW (Continuous
Time RandomWalks) in [29]. These equations are investigated in order to determine
and interpret certain physical phenomena which govern such processes as diffusion
in porous media, reaction and relaxation in complex systems, anomalous diffusion,
and so on (see also [28, 36]).

Consider an arbitrary reaction characterized by a time-dependent quantity N =
N(t). It is possible to calculate the rate of change dN

dt to be a balance between the
destruction rate d and the production rate p of N , that is,

dN

dt
= −d+ p.

In general, through feedback or other interaction mechanism, destruction and pro-
duction depend on the quantity N itself, that is,

d = d(N) and p = p(N).
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This dependence is complicated, since the destruction or the production at a time t
depends not only on N(t), but also on the past history N(η) (η < t) of the variable
N . This may be formally represented by the following equation (see [26]):

(4.1)
dN

dt
= −d (Nt) + p (Nt) ,

where Nt denotes the function defined by

Nt (t
∗) = N (t− t∗) (t∗ > 0).

Haubold and Mathai [26] studied a special case of the equation (4.1) in the following
form:

(4.2)
dNi

dt
= −ciNi (t)

with the initial condition that Ni (t = 0) = N0 is the number density of species i at
time t = 0 and the constant ci > 0. This is known as a standard kinetic equation.
The solution of the equation (4.2) is easily seen to be given by

(4.3) Ni (t) = N0 e
−cit.

Integration gives an alternative form of the equation (4.2) as follows:

(4.4) N (t)−N0 = c · 0D
−1
t N (t) ,

where 0D
−1
t is the standard integral operator and c is a constant.

The fractional-calculus generalization of the equation (4.4) is given as in the
following form (see [26]):

(4.5) N (t)−N0 = cν 0D
−ν
t N (t) ,

where 0D
−ν
t is the familiar Riemann-Liouville fractional integral operator (see, e.g.,

[31, 52]; see also [14]) defined by

(4.6) 0D
−ν
t f(t) =

1

Γ (ν)

∫ t

0

(t− u)
ν−1

f (u) du
(
ℜ (ν) > 0

)
.

In terms of the generalized Bessel function ωl,b,c (t) of the first kind, Kumar et al.
[37] studied the following equation:

(4.7) N (t)−N0 ωl,b,c (t) = −dν 0D
−ν
t N (t) ,

whose solution is given by

(4.8) N (t) = N0

∞∑
k=0

(−c)k Γ (2k + l + 1)

k! Γ
(
l + k + b+1

2

) (
t

2

)2k+l

Eν,2k+l+1 (−dνtν) ,
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where Eν,2k+l+1 (·) is the above-mentioned generalized Mittag-Leffler function (see
[53, 111]; see also [82]).

Srivastava and Tomovski [96] introduced the following generalization of the
Mittag-Leffler function:

(4.9) Eγ,κ
α,β (z) =

∞∑
n=0

(γ)κn
Γ (αn+ β)

zn

n!(
α, β, γ ∈ C; ℜ (α) > max {0,ℜ (κ)− 1} ; min {ℜ (β) ,ℜ (κ)} > 0

)
,

where, in terms of the Gamma function Γ(z), the widely-used Pochhammer symbol
(λ)ν (λ, ν ∈ C) is defined, in general, by (see, for details, [88, 91]; see also [85])

(4.10)

(λ)ν :=
Γ(λ+ ν)

Γ(λ)

(
λ ∈ C \ Z−

0

)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-
quotient in (4.10) exists. A special case of the generalized Mittag-Leffler function
Eγ,κ

α,β (z) when κ = q ∈ (0, 1) ∪ N was studied earlier by Shukla and Prajapati (see
[81]).

Saxena and Nishimoto [77] studied a further generalization of the generalized
Mittag-Leffler function (4.9) in the following form:

(4.11) Eγ,κ [(α1, β1) , · · · , (αm, βm) ; z] =
∞∑

n=0

(γ)κn
m∏
j=1

Γ (nαj + βj)

zn

n!

(
αj , βj , γ, κ ∈ C; min{ℜ (κ) ,ℜ (αj) ,ℜ (βj)} > 0 (j ∈ {1, · · · ,m}) ;

ℜ

 m∑
j=1

αj

 > max {0,ℜ(κ)− 1}

)
.

The special case of (4.11) when γ = κ = 1 reduces to the following multi-index
Mittag-Leffler function (see [33]; see also [16]):

(4.12) E1,1 [(α1, β1) , · · · , (αm, βm) ; z] =
∞∑

n=0

zn

m∏
j=1

Γ (nαj + βj)

(
αj , βj ∈ C; min{ℜ (αj) ,ℜ (βj)} > 0 (j ∈ {1, · · · ,m})

)
.
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The Mittag-Leffler function Eα(z), the generalized Mittag-Leffler function
Eα,β(z), and all of their aforementioned extensions and generalizations are obvi-
ously contained as special cases in the well-known Fox-Wright function pΨq defined
by (see, for details, [88, p. 21]; see also [31, p. 56])

(4.13)

pΨq [z] = pΨq

 (a1, α1) , · · · , (ap, αp) ;

(b1, β1) , · · · , (bq, βq) ;
z

 = pΨq

 (ai, αi)1,p ;

(bj , βj)1,q ;
z



=

∞∑
n=0

p∏
i=1

Γ (ai + αin)

q∏
j=1

Γ (bj + βjn)

zn

n!
.

Suppose that f(t) is a real- (or complex-) valued function of the (time) variable
t > 0 and s is a real or complex parameter. The Laplace transform of the function
f(t) is defined by

(4.14)

F (s) = L {f (t) : s} =

∫ ∞

0

e−st f (t) dt

= lim
τ→∞

∫ τ

0

e−st f (t) dt,

whenever the limit exits (as a finite number). The convolution of two functions
f(t) and g(t), which are defined for t > 0, plays an important rôle in a number of
different physical applications. The Laplace convolution of the functions f(t) and
g(t) is given by the following integral:

(4.15) (f ∗ g)(t) =
∫ t

0

f(τ) g(t− τ) dτ = (g ∗ f)(t),

which exists if the functions f and g are at least piecewise continuous. One of
the very significant properties possessed by the convolution in connection with the
Laplace transform is that the Laplace transform of the convolution of two functions
is the product of their transforms (see, e.g., [80]).

The Laplace Convolution Theorem. If f and g are piecewise continuous on
[0, ∞) and of exponential order α when t→ ∞, then

(4.16) L {(f ∗ g)(t) : s} = L {f(t) : s} · L {g(t) : s}
(
ℜ(s) > α

)
.

The so-called Sumudu transform is an integral transform which was defined and
studied by Watugala [109] to facilitate the process of solving differential and integral
equations in the time domain. The Sumudu transform has been used in various
applications of system engineering and applied physics. For some fundamental
properties of the Sumudu transform, one may refer to the works including (for
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example) [2, 9, 10, 86, 109]. It turns out that the Sumudu transform has very
special properties which are useful in solving problems involving kinetic equations
in science and engineering.

Let A be the class of exponentially bounded functions f : R → R, that is,

(4.17) |f(t)| <


M exp

(
− t

τ1

)
(t 5 0)

M exp

(
t

τ2

)
(t = 0),

whereM , τ1 and τ2 are some positive real constants. The Sumudu transform defined
on the set A is given by the following formula (see [109]; see also [17])

(4.18) G (u) = S [f (t) ;u] :=

∫ ∞

0

e−t f (ut) dt (−τ1 < u < τ2) .

The Sumudu transform given in (4.18) can also be derived directly from the Fourier
integral. Moreover, it can be easily verified that the Sumudu transform is a linear
operator and the function G(u) in (4.18) keeps the same units as f(t); that is, for
any real or complex number λ, we have

S[f(λt);u] = G(λu).

The Sumudu transform G(u) and the Laplace transform F (s) exhibit a duality
relation that may be expressed as follows:

(4.19) G

(
1

s

)
= s F (s) or G (u) =

1

u
F

(
1

u

)
.

The Sumudu transform has been shown to be the theoretical dual of the Laplace
transform. It is also connected to the s-multiplied Laplace transform (see [51]).
The use of the convolution theorem for the Sumudu transform in (4.6) gives us the
following identity:

(4.20) S
[
0D

−ν
t f (t) ;u

]
= S

[
tν−1

Γ (ν)
;u

]
· S [f (t) ;u] = uν G (u) .

In connection with the definition (4.18), in case the parameter u takes on neg-
ative or complex values, the dualities such as those described in (4.19) do not hold
true, in general, because (after the change of variables) the contour of integration
in the Laplace integral changes accordingly.

In our present investigation, we have chosen to make use of the Sumudu trans-
form instead of the classical Laplace transform. In fact, for the various problems
considered here, the Sumudu transform has not only been found to be more conve-
nient to use, but the closed-form results derived here also appear to be remarkably
simpler (see also [86]).
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Throughout this presentation, it is tacitly assumed the all involved complex
powers of (for example) complex numbers take on their principal values.

5. Solution of Generalized Fractional Kinetic Equations by Using the
Laplace Transform

We first find the solution of the generalized fractional kinetic equation involving
the generalized Mittag-Leffler function (4.11) by applying the Laplace transform
technique. We begin by stating and proving the following lemma.

Lemma 5.1. Let min {ℜ (λ) , ℜ (ρ) , ℜ (s)} > 0. Then the following Laplace trans-
form of Eγ,κ [(α1, β1) , · · · , (αm, βm) ; z] holds true:

(5.1)

L
{
tλ−1 Eγ,κ [(α1, β1) , · · · , (αm, βm) ; tρ] : s

}
=

s−λ

Γ (γ)
2Ψm

 (γ, κ) , (λ, ρ) ;

(βj , αj)1,m ;
s−ρ

 ,
where 2Ψm[·] is the Fox-Wright function given by (4.13) and all involved complex
powers of (for example) complex numbers are assumed to take on their principal
values.

Proof. Using the definition (4.14) of the Laplace transform and (4.11), we can
obtain the result (5.1). In the course of the proof, the interchange of the order of
integration and summation can be justified under the stated conditions. 2

For later convenience, a special case of (5.1) when λ = β1 and ρ = α1 is given
in Lemma 5.2 below.

Lemma 5.2. The following formula holds true for min{ℜ(s),ℜ(α1),ℜ(β1)} > 0 :

(5.2)

L
[
tβ1−1Eγ,κ {(α1, β1) , · · · , (αm, βm) ; tα1 ] : s

}
=
s−β1

Γ (γ)
1Ψm−1

 (γ, κ) ;

(βj , αj)2,m ;
s−α1

 ,
where all involved complex powers of (for example) complex numbers are assumed
to take on their principal values.

Theorem 5.3. Let c, d, ν, λ, ρ ∈ R+. Also let αj , βj , γ, κ ∈ C with

min{ℜ (αj) ,ℜ (βj)} > 0 (j ∈ {1, · · · ,m}) ,

ℜ (κ) > 0 and ℜ

 m∑
j=1

αj

 > max {0,ℜ(κ)− 1} .
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Then the solution of the following generalized fractional kinetic equation:

(5.3) N (t)−N0 t
λ−1Eγ,κ [(α1, β1) , · · · , (αm, βm) ; dtρ] = −cν 0D

−ν
t N (t)

is given by

(5.4) N (t) =
N0 t

λ−1

Γ (γ)

∞∑
r=0

(−cνtν)r 2Ψm+1

 (γ, κ) , (λ, ρ) ;

(νr + λ, ρ) , (βj , αj)1,m ;
dtρ

 .
Proof. Applying the Laplace transform (4.14) to the equation (5.3) and using the
identity in Lemma 5.1, we obtain

N (s) =
N0

1 + (c/s)ν

∞∑
n=0

(γ)κn
m∏
j=1

Γ (nαj + βj)

Γ (ρn+ λ)

sρn+λ

dn

n!
,

where, just as in the definition (4.14),

N (s) := L {N(t) : s} .

Using the geometric series:

1

1 + (c/s)ν
=

∞∑
r=0

(−1)r
( c
s

)νr
(|s| > c),

we find for |p| > c that

(5.5) N (s) = N0

∞∑
r=0

(−cν)r
∞∑

n=0

(γ)κn
m∏
j=1

Γ (nαj + βj)

Γ (ρn+ λ)

sρn+νr+λ

dn

n!
.

Now, by inverting the Laplace transform on each side of (5.5) and using the following
well-known identity:

L {tν : s} =
Γ(ν + 1)

sν+1

⇐⇒ L−1

(
1

sν+1

)
=

tν

Γ(ν + 1)

(
ℜ(ν) > −1; ℜ(s) > 0

)
,(5.6)

we get

N (t) = N0 t
λ−1

∞∑
r=0

(−cνtν)r

·
∞∑

n=0

Γ (γ + κn) Γ (ρn+ λ)

Γ (γ) Γ (ρn+ νr + λ)
m∏
j=1

Γ (nαj + βj)

(dtρ)
n

n!
,



Fractional-Order Derivatives and Integrals 89

which, in view of the definition (4.13) of the Fox-Wright function, leads us easily to
the right-hand side of (5.4). This completes the proof of Theorem 5.3. 2

Theorem 5.4. Let c, d, ν ∈ R+. Also let αj , βj , γ, κ ∈ C with

min{ℜ (αj) ,ℜ (βj) > 0 (j ∈ {1, · · · ,m}) ,

ℜ (κ) > 0 and ℜ

 m∑
j=1

αj

 > max {0,ℜ(κ)− 1} .

Then the solution of the following generalized fractional kinetic equation:

(5.7) N (t)−N0 t
β1−1Eγ,κ [(α1, β1) , · · · , (αm, βm) ; dtα1 ] = −cν 0D

−ν
t N (t)

is given by

(5.8) N (t) =
N0 t

β1−1

Γ (γ)

∞∑
r=0

(−cνtν)r 1Ψm

 (γ, κ) ;

(νr + β1, α1) , (βj , αj)2,m ;
dtα1

 .
Proof. Proof of the result asserted by Theorem 5.4 runs parallel to that of Theorem
5.3. Here we use (5.2) instead of (5.1). The details are, therefore, being omitted. 2

Remark 5.5. For κ = q ∈ (0, 1) ∪ N, the results in Theorem 5.3 and Theorem
5.4 reduce to those for the generalized fractional kinetic equation involving the
generalized Mittag-Leffler function studied by Saxena et al. [79].

By setting m = 1 in (5.3), we get an interesting generalized fractional kinetic
equation with its solution given by the following corollary.

Corollary 5.6. Let c, d, ν, λ, ρ ∈ R+. Also let α, β, γ, κ ∈ C with

ℜ (α) > max {0,ℜ (κ)− 1} and min {ℜ (β) ,ℜ (κ)} > 0.

Then the solution of the following generalized fractional kinetic equation:

(5.9) N (t)−N0 t
λ−1Eγ,κ

α,β [dt
ρ] = −cν 0D

−ν
t N (t)

is given by

(5.10) N (t) =
N0 t

λ−1

Γ (γ)

∞∑
r=0

(−cνtν)r 2Ψ2

 (γ, κ) , (λ, ρ) ;

(νr + λ, ρ) , (β, α) ;
dtρ

 ,
where Eγ,κ

α,β [z] is the generalized Mittag-Leffler function defined by (4.9).

In its further special case when κ = q ∈ (0, 1) ∪ N, Corollary 5.6 would reduce
immediately to Corollary 5.7 below.
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Corollary 5.7. Let c, d, ν, λ, ρ ∈ R+. Also let α, β, γ ∈ C with min {ℜ (α) ,ℜ (β)} >
0. Suppose that q ∈ (0, 1) ∪ N. Then the solution of the following generalized
fractional kinetic equation:

(5.11) N (t)−N0 t
λ−1Eγ,q

α,β [dt
ρ] = −cν 0D

−ν
t N (t)

is given by

(5.12) N (t) =
N0 t

λ−1

Γ (γ)

∞∑
r=0

(−cνtν)r 2Ψ2

 (γ, q) , (λ, ρ) ;

(νr + λ, ρ) , (β, α) ;
dtρ

 ,
where Eγ,q

α,β [z] is the above-mentioned special case of the generalized Mittag-Leffler
function in (4.9) when κ = q ∈ (0, 1) ∪ N.

Remark 5.8. The result asserted by Theorem 5.4 can also be suitably specialized
to deduce solutions of certain generalized fractional kinetic equations analogous to
those which are dealt with in Corollary 5.6 and Corollary 5.7.

6. Solution of Generalized Fractional Kinetic Equations by Using the
Sumudu Transform

In this section we propose to investigate the solution of the generalized fractional
kinetic equation involving the generalized Mittag-Leffler function (4.11) by applying
the Sumudu transform technique. The following lemmas will be required in our
derivations.

Lemma 6.1. Let min{ℜ (λ) ,ℜ (ρ) ,ℜ (u)} > 0. Then the following Sumudu trans-
form holds true:

S
[
tλ−1 Eγ,κ [(α1, β1) , · · · , (αm, βm) ; tρ] ;u

]
=
uλ−1

Γ (γ)
2Ψm

 (γ, κ) , (λ, ρ) ;

(βj , αj)1,m ;
uρ

 .(6.1)

Proof. By using (4.11), we readily have

S := S
[
tλ−1 Eγ,κ [(α1, β1) , · · · , (αm, βm) ; tρ] ;u

]
=

∫ ∞

0

e−t
∞∑

n=0

(γ)κn
m∏
j=1

Γ (nαj + βj)

(ut)
ρn+λ−1

n!
dt

=

∞∑
n=0

(γ)κn
m∏
j=1

Γ (nαj + βj)

uρn+λ−1

n!

∫ ∞

0

e−t tρn+λ−1 dt.(6.2)
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This last integral in (6.2) can be evaluated by means of Euler’s Gamma-function
integral:

(6.3)

∫ ∞

0

e−t tz−1 dt = Γ (z)
(
ℜ (z) > 0

)
.

We thus find that

S =
∞∑

n=0

(γ)κn Γ (ρn+ λ)
m∏
j=1

Γ (nαj + βj)

uρn+λ−1

n!

=
uλ−1

Γ (γ)

∞∑
n=0

Γ (γ + κn) Γ (ρn+ λ)
m∏
j=1

Γ (nαj + βj)

uρn

n!
,

which, in view of (4.13), leads us to the right-hand side of (6.1). 2

Remark 6.2. We find it to be convenient to record here a special case of (6.1)
when λ = β1 and ρ = α1 as Lemma 6.3 below.

Lemma 6.3. Let min{ℜ (α1) ,ℜ (β1) ,ℜ (u)} > 0. Then the following Sumudu
transform holds true:

S
[
tβ1−1 Eγ,κ [(α1, β1) , · · · , (αm, βm) ; tα1 ] ;u

]
=
uβ1−1

Γ (γ)
1Ψm−1

 (γ, κ) ;

(βj , αj)2,m ;
uα1

 .(6.4)

Theorem 6.4. Let c, d, ν, λ, ρ ∈ R+ and ℜ (u) > 0 with |u| < c−1 (c ̸= d). Also let
αj , βj , γ, κ ∈ C with

min{ℜ (αj) ,ℜ (βj)} > 0 (j ∈ {1, · · · ,m}) ,

ℜ (κ) > 0 and ℜ

 m∑
j=1

αj

 > max [0,ℜ (κ)− 1] .

Then the solution of the following generalized fractional kinetic equation:

(6.5) N (t)−N0 t
λ−1Eγ,κ [(α1, β1) , · · · , (αm, βm) ; dtρ] = −cν 0D

−ν
t N (t)

is given by

(6.6) N (t) =
N0 t

λ−2

Γ (γ)

∞∑
r=0

(−cνtν)r 2Ψm+1

 (γ, κ) , (λ, ρ) ;

(νr + λ− 1, ρ) , (βj , αj)1,m ;
dtρ

 .
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Proof. Taking the Sumudu transform on both sides of (6.5) and using Lemma 6.1
and (4.20), we find that

(6.7) N (u) = N0

∞∑
n=0

(γ)κn Γ (ρn+ λ)
m∏
j=1

Γ (nαj + βj)

dnuρn+λ−1

n!
− cνuν N (u) ,

where

(6.8) N (u) := S [N(t);u] .

Equivalently, we can write (6.7) as follows:

(6.9) N (u) = N0

∞∑
n=0

(γ)κn Γ (ρn+ λ)
m∏
j=1

Γ (nαj + βj)

uρn+λ−1

1 + cνuν
dn

n!
.

Using the binomial series expansion of (1 + cνuν)
−1

in (6.9) and inverting the
Sumudu transform on both sides of the resulting equation, we get

N (t) = N0

∞∑
r=0

(−cν)r
∞∑

n=0

(γ)κn Γ (ρn+ λ)
m∏
j=1

Γ (nαj + βj)

dn

n!
S−1

{
uρn+νr+λ−1

}
.

Finally, we make use of the following formula:

S−1 {uν} =
tν−1

Γ (ν)

(
min {ℜ (ν) ,ℜ (u)} > 0

)
.

After some simplification, we thus find that

N (t) = N0 t
λ−2

∞∑
r=0

(−cνtν)r

·
∞∑

n=0

Γ (γ + κn) Γ (ρn+ λ)

Γ (γ) Γ (ρn+ νr + λ− 1)
m∏
j=1

Γ (nαj + βj)

dntρn

n!
,

which, in view of (4.13), leads us to the right-hand side of (6.6). This complete the
proof of Theorem 6.4. 2

Theorem 6.5. Let c, d, ν ∈ R+ and ℜ (u) > 0 with |u| < c−1 (c ̸= d). Also let
αj , βj , γ, κ ∈ C with

min{ℜ (αj) ,ℜ (βj)} > 0 (j ∈ {1, · · · ,m}) ,
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ℜ (κ) > 0 and ℜ

 m∑
j=1

αj

 > max {0,ℜ(κ)− 1} .

Then the solution of the following generalized fractional kinetic equation:

(6.10) N (t)−N0 t
β1−1Eγ,κ [(α1, β1) , · · · , (αm, βm) ; dtα1 ] = −cν 0D

−ν
t N (t)

is given by
(6.11)

N (t) =
N0 t

β1−2

Γ (γ)

∞∑
r=0

(−cνtν)r 1Ψm

 (γ, κ) ;

(νr + β1 − 1, α1) , (βj , αj)2,m ;
dtρ

 .
Proof. Our demonstration of Theorem 6.5 would run parallel to that of Theorem
6.4. Here, in this case, we use (6.4) instead of (6.1). We, therefore, omit the details
involved. 2

Upon setting m = 1 in Theorem 6.4, we can deduce the following simpler result.

Corollary 6.6. Let c, d, ν, λ, ρ ∈ R+ and ℜ (u) > 0 with |u| < c−1 (c ̸= d). Also
let α, β, γ, κ ∈ C with

ℜ (α) > max {0,ℜ (κ)− 1} and min {ℜ (β) ,ℜ (κ)} > 0.

Then the solution of the following generalized fractional kinetic equation:

(6.12) N (t)−N0 t
λ−1Eγ,κ

α,β [dt
ρ] = −cν 0D

−ν
t N (t)

is given by

(6.13) N (t) =
N0 t

λ−2

Γ (γ)

∞∑
r=0

(−cνtν)νr 2Ψ2

 (γ, κ) , (λ, ρ) ;

(νr + λ− 1, ρ) , (β, α) ;
dtρ

 .
If we set m = 1 and κ = q ∈ (0, 1) ∪ N in Theorem 6.4, we are led easily to

Corollary 6.7 below, which would follow also as a further special case of Corollary
6.6 when κ = q ∈ (0, 1) ∪ N.

Corollary 6.7. Let c, d, ν, λ, ρ ∈ R+ and ℜ (u) > 0 with |u| < c−1 (c ̸= d). Also
let α, β, γ ∈ C with

min {ℜ (α) ,ℜ (β)} > 0 and q ∈ (0, 1) ∪ N.

Then the solution of the following generalized fractional kinetic equation:

(6.14) N (t)−N0 t
λ−1Eγ,q

α,β [dt
ρ] = −cν 0D

−ν
t N (t)
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is given by

(6.15) N (t) =
N0 t

λ−2

Γ (γ)

∞∑
r=0

(−cνtν)r 2Ψ2

 (γ, q) , (λ, ρ) ;

(νr + λ− 1, ρ) , (β, α) ;
dtρ

 .
We conclude this section by remarking that the results presented here are gen-

eral enough to yield, as their special cases, solutions of a number of known or new
fractional kinetic equations involving such other special functions as (for example)
those considered by Haubold and Mathai [26] and Saxena et al. [74, 75, 78]. More-
over, in our investigation here, our choice to make use of the Sumudu transform
instead of the classical Laplace transform is prompted by the various problems con-
sidered here and also by the fact that the closed-form results derived here happen
to be remarkably simpler (see also [23, 86]).

7. Fractional Differintegral Operators Based Upon the Cauchy-Goursat
Integral Formula

Operators of fractional differintegrals (that is, fractional derivatives and frac-
tional integrals), which are based essentially upon the familiar Cauchy-Goursat
integral formula:

f (n) (z0) =
n!

2πi

∫
C

f(z)

(z − z0)
n+1 dz (n ∈ N0),

were considered by (among others) Sonin in 1869, Letnikov in 1868 onwards, and
Laurent in 1884. Here, as usual, the function f(z) is analytic everywhere within
and on a simple closed contour C in the complex z-plane, taken in the positive
(counter-clockwise) direction and z0 is any point interior to the contour C. In
recent years, many authors have demonstrated the usefulness of fractional calcu-
lus operators (based upon the above-mentioned Cauchy-Goursat integral formula)
in obtaining particular solutions of numerous families of homogeneous (as well as
nonhomogeneous) linear ordinary and partial differential equations which are asso-
ciated, for example, with many of the following celebrated equations as well as their
close relatives:

I. The Gauss Equation:

(7.1) z (1− z)
d2w

dz2
+ [γ − (α+ β + 1) z]

dw

dz
− αβw = 0

II. The Kummer Equation:

(7.2) z
d2w

dz2
+ (γ − z)

dw

dz
− αw = 0



Fractional-Order Derivatives and Integrals 95

III. The Euler Equation:

(7.3) z2
d2w

dz2
+ z

dw

dz
− ρ2w = 0

IV. The Coulomb Equation:

(7.4) z
d2w

dz2
+ (2λ− z)

dw

dz
+ (µ− λ)w = 0

V. The Laguerre-Sonin Equation:

(7.5) z
d2w

dz2
+ (α+ 1− z)

dw

dz
+ λw = 0

VI. The Chebyshev Equation:

(7.6)
(
1− z2

) d2w
dz2

− z
dw

dz
+ λ2w = 0

VII. The Weber-Hermite Equation:

(7.7)
d2w

dz2
− 2z

dw

dz
+ (λ− 1)w = 0

Numerous earlier contributions on fractional calculus along the aforementioned
lines are reproduced, with proper credits, in the works of Nishimoto (cf. [54, 55]).
Moreover, a rather systematic analysis (including interconnections) of many of the
results involving (homogeneous or nonhomogeneous) linear differential equations
associated with (for example) the Gauss hypergeometric equation (7.1) can be found
in the works of Nishimoto et al. [61, 62] and the recent contribution on this subject
by Wang et al. [106] (see also some other recent applications considered by Lin et
al. [42] and Prieto et al. [65]).

In the cases of (ordinary as well as partial) differential equations of higher orders,
which have stemmed naturally from the Gauss hypergeometric equation (7.1) and its
many relatives and extensions, including some of the above-listed linear differential
equations (7.2) to (7.7), there have been several seemingly independent attempts
to present a remarkably large number of scattered results in a unified manner. We
choose to furnish here the generalizations (and unification) proposed in one of the
latest works on this subject by Tu et al. [99] in which references to many earlier
related works can be found. We find it to be convenient to begin by recalling the
following definition of a fractional differintegral (that is, fractional derivative and
fractional integral) of f(z) of order ν ∈ R.

Definition 7.1.([54, 55, 94]) If the function f (z) is analytic and has no branch
point inside and on C, where

(7.8) C :=
{
C−,C+

}
,
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C− is a contour along the cut joining the points z and −∞ + iJ (z), which starts
from the point at −∞, encircles the point z once counter-clockwise, and returns to
the point at −∞, C+ is a contour along the cut joining the points z and ∞+ iJ (z),
which starts from the point at ∞, encircles the point z once counter-clockwise, and
returns to the point at ∞,

(7.9) fν (z) = Cfν (z) :=
Γ (ν + 1)

2πi

∫
C

f (ζ) dζ

(ζ − z)
ν+1

(
ν ∈ R \ Z−; Z− := {−1,−2,−3, · · · }

)
and

(7.10) f−n (z) := lim
ν→−n

{fν (z)} (n ∈ N) ,

where ζ ̸= z,

(7.11) −π 5 arg (ζ − z) 5 π for C−,

and

(7.12) 0 5 arg (ζ − z) 5 2π for C+,

then fν (z) (ν > 0) is said to be the fractional derivative of f (z) of order ν and
fν (z) (ν < 0) is said to be the fractional integral of f (z) of order −ν, provided
that

(7.13) |fν (z)| <∞ (ν ∈ R) .

Throughout the remainder of this section, we shall simply write fν for fν (z)
whenever the argument of the differintegrated function f is clearly understood by
the surrounding context. Moreover, in case f is a many-valued function, we shall
tacitly consider the principal value of f in this investigation.

Each of the following general results is capable of yielding particular solutions of
many simpler families of linear ordinary fractional differintegral equations (cf. Tu
et al. [99]) including (for example) the classical differential equations listed above
[cf. (7.1) to (7.7)].

Theorem 7.2. Let P (z; p) and Q (z; q) be polynomials in z of degrees p and q,
respectively, defined by

P (z; p) :=

p∑
k=0

ak z
p−k

= a0

p∏
j=1

(z − zj) (a0 ̸= 0; p ∈ N)(7.14)
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and

(7.15) Q (z; q) :=

q∑
k=0

bk z
q−k (b0 ̸= 0; q ∈ N) .

Suppose also that f−ν (̸= 0) exists for a given function f. Then the following non-
homogeneous linear ordinary fractional differintegral equation:

P (z; p)ϕµ (z) +

[
p∑

k=1

(
ν

k

)
Pk (z; p) +

q∑
k=1

(
ν

k − 1

)
Qk−1 (z; q)

]
ϕµ−k (z)

+

(
ν

q

)
q! b0 ϕµ−q−1 (z) = f (z)(7.16)

(µ, ν ∈ R; p, q ∈ N)

has a particular solution of the form:

ϕ (z) =

((
f−ν (z)

P (z; p)
eH(z;p,q)

)
−1

e−H(z;p,q)

)
ν−µ+1

(7.17)

(z ∈ C \ {z1, · · · , zp}) ,

where, for convenience,

(7.18) H (z; p, q) :=

∫ z Q (ζ; q)

P (ζ; p)
dζ (z ∈ C \ {z1, · · · , zp}) ,

provided that the second member of (7.17) exists.

Theorem 7.3. Under the various relevant hypotheses of Theorem 7.2, the following
homogeneous linear ordinary fractional differintegral equation:

P (z; p)ϕµ (z) +

[
p∑

k=1

(
ν

k

)
Pk (z; p) +

q∑
k=1

(
ν

k − 1

)
Qk−1 (z; q)

]
ϕµ−k (z)

+

(
ν

q

)
q! b0 ϕµ−q−1 (z) = 0(7.19)

(µ, ν ∈ R; p, q ∈ N)

has solutions of the form:

(7.20) ϕ (z) = K
(
e−H(z;p,q)

)
ν−µ+1

,
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where K is an arbitrary constant and H (z; p, q) is given by (7.18), it being provided
that the second member of (7.20) exists.

Next, for a function u = u (z, t) of two independent variables z and t, we find it
to be convenient to use the following notation:

∂µ+νu

∂zµ∂tν

in order to abbreviate the partial fractional differintegral of u (z, t) of order µ with
respect to z and of order ν with respect to t (µ, ν ∈ R). We now state the following
general result (see, for details, Tu et al. [99]).

Theorem 7.4. Let the polynomials P (z; p) and Q (z; q) be defined by (7.14) and
(7.15), respectively. Suppose also that the function H (z; p, q) is given by (7.18).
Then the following partial fractional differintegral equation:

P (z; p)
∂µu

∂zµ
+

[
p−1∑
k=1

(
ν

k

)
Pk (z; p) +

q∑
k=1

(
ν

k − 1

)
Qk−1 (z; q − 1)

]
∂µ−ku

∂zµ−k

+γ
∂µ−pu

∂zµ−p
= α

∂µ−p+2u

∂zµ−p∂t2
+ β

∂µ−p+1u

∂zµ−p∂t
(7.21)

(µ, ν ∈ R; p, q ∈ N)

has solutions of the form:

(7.22) u (z, t) =


K1

(
e−H(z;p,q−1)

)
ν−µ+1

eξt (α ̸= 0)

K2

(
e−H(z;p,q−1)

)
ν−µ+1

eηt (α = 0; β ̸= 0) ,

where K1 and K2 are arbitrary constants, α, β, and γ are given constants, and
(for convenience)
(7.23)

ξ :=
−β ±

√
β2 + 4 (γ − δ)α

2α
(α ̸= 0) and η :=

γ − δ

β
(α = 0; β ̸= 0) ,

with

(7.24) δ :=

(
ν

p

)
p! a0,

provided that the second member of (7.22) exists in each case.

We conclude this section by remarking further that either or both of the poly-
nomials P (z; p) and Q (z; q), involved in Theorem 7.2 to Theorem 7.4, can be of
degree 0 as well. Thus, in the definitions (7.14) and (7.15) (as also in Theorem 7.2 to
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Theorem 7.4, N may easily be replaced (if and where needed) by N0. Furthermore,
it is fairly straightforward to see how each of these general theorems can be suitably
specialized to yield numerous simpler results scattered throughout the ever-growing
literature on fractional calculus.

8. Applications Involving a Class of Non-Fuchsian Differential Equations

In this section, we aim at applying Theorem 7.2 in order to find (explicit) par-
ticular solutions of the following general class of non-Fuchsian differential equations
with six parameters:(

1 +
l

z

)
d2φ

dz2
+

[
α+

β

z

(
1 +

l

z

)]
dφ

dz
+

[
γ +

δ

z
+

ε

z2

(
1 +

l

z

)]
φ (z)

= f (z) (z ∈ C \ {0,−1}) ,(8.1)

where f is a given function and the parameters α, β, γ, δ, ε, and l are unrestricted,
in general. Indeed, if we make use of the transformation:

(8.2) φ (z) = zρ eλz ϕ (z) ,

constrain the various parameters involved in (5.1) and (5.2) so that

(8.3) ρ = −1

2
β =

−1±
√
1 + 4ε

2
and λ =

−α±
√
α2 − 4γ

2
,

then Theorem 7.2 would eventually imply that the nonhomogeneous linear ordinary
differential equation (8.1) has a particular solution in the following form:

φ (z) = zρeλzϕ (z) = zρeλz

(((
z1−ρe−λzf (z)

)
−ν

· (z + l)
−ν−αl−1 · e(2λ+α)z

)
−1

· (z + l)
ν+αl · e−(2λ+α)z

)
ν−1

(z ∈ C \ {0,−l} ; ν ∈ R) ,(8.4)

and (by Theorem 7.3) the corresponding homogeneous linear ordinary differential
equation:

(8.5)

(
1 +

l

z

)
d2φ

dz2
+

[
α+

β

z

(
1 +

l

z

)]
dφ

dz
+

[
γ +

δ

z
+

ε

z2

(
1 +

l

z

)]
φ (z) = 0

(z ∈ C \ {0,−l}) ,

has solutions given by

φ (z) = zρeλzϕ (z) = Kzρeλz
(
(z + l)

ν+αl · e−(2λ+α)z
)
ν−1

(8.6)

(z ∈ C \ {0,−l} ; ν ∈ R) ,
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where K is an arbitrary constant, the parameters ρ and λ are given (as before) by
(8.3), and

ν =
λ2l + ρα+ δ

2λ+ α
.

For various special choices for the free parameters occurring in (8.1) and (8.5),
one can apply the results of this section to many known non-Fuchsian differential
equations. These include (for example) a special limit (confluent) case of the Gauss
hypergeometric equation (7.1), referred to as the Whittaker equation (see, for ex-
ample, [110, p. 337, Equation 16.1 (B)]; see also [18, Vol. I, p. 248, Equation 6.1
(4)]), the so-called Fukuhara equation (cf. [21]; see also [57]), the Tricomi equation
(cf. [98, p. 7, Equation 1.2 (1)]; see also [18, Vol. I, p. 251, Equation 6.2 (13)]),
the familiar Bessel equation (cf. [108]), and so on. For a systematic investiga-
tion of these and many other closely-related differential equations (including, for
example, many of the familiar differential equations list at the beginning of Sec-
tion 4 here), we refer the interested reader to the recent works of Nishimoto et al.
[56, 57, 58, 59, 60, 61, 62], Salinas de Romero et al. [69, 70], Galué [22], Lin et al.
[43, 44, 45, 46, 47, 48], Tu et al. [99, 100, 101, 102], and Wang et al. [106, 107].

9. The Classical Gauss and Jacobi Differential Equations Revisited

The main purpose of this section (and Section 10 below) is to follow rather
closely and analogously the investigations in (for example) [39, 46, 90, 106, 107] of
solutions of some general families of second-order linear ordinary differential equa-
tions, which are associated with the familiar Bessel differential equation of general
order ν (cf. [18, Vol. II, Chapter 7]; see also [108] and [110, Chapter 17]):

(9.1) z2
d2w

dz2
+ z

dw

dz
+
(
z2 − ν2

)
w = 0,

which is named after Friedrich Wilheim Bessel (1784-1846). More precisely, just
as in the earlier works [44, 90] (see also [40, 41]), which dealt systematically with
Legendre’s differential equation (cf. [18, Vol. I, p. 121, Equation 3.2(1)]; see also
[110, Chapter 15]):

(9.2)
(
1− z2

) d2w

dz2
+−2z

dw

dz
+

(
ν(ν + 1)− µ2

1− z2

)
w = 0,

we aim here in this section at demonstrating how the underlying simple fractional-
calculus approach to the solutions of the classical differential equations (9.1) and
(9.2) would lead us analogously to several interesting consequences including (for
example) an alternative investigation of solutions of the following two-parameter
family of second-order ordinary differential equations (see also [106]):

(9.3) z(1− z)
d2w

dz2
+ [(ρ− 2λ)z + λ+ σ]

dw

dz
+ λ (ρ− λ+ 1)w = 0,
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We begin by setting

µ = 2, ν 7→ λ, p− 1 = q = 1, a0 = −1, a1 = 1, a2 = 0, b0 = ρ, and b1 = σ
(9.4)

(ρ ̸= 0; λ ∈ R)

in Theorem 7.2. We can thus deduce the following application of Theorem 7.2
relevant to the linear ordinary differential equation (9.3).

Theorem 9.1. If the given function f satisfies the constraint (7.13) and f−λ ̸= 0,
then the following nonhomogeneous linear ordinary differential equation:

z(1− z)
d2ϕ

dz2
+ [(ρ− 2λ)z + λ+ σ]

dϕ

dz
+ λ (ρ− λ+ 1)ϕ = f (z)(9.5)

(z ∈ C \ {0, 1}; ρ ̸= 0; λ ∈ R)

has a particular solution of the form:

ϕ (z) =

((
f−λ (z) · zσ−1 · (1− z)

−ρ−σ−1
)
−1

· z−σ · (1− z)
ρ+σ

)
λ−1

(9.6)

(z ∈ C \ {0, 1}; ρ ̸= 0; λ ∈ R) ,

provided that the second member of 9.6 exists.

Furthermore, the following homogeneous linear ordinary differential equation:

z(1− z)
d2ϕ

dz2
+ [(ρ− 2λ)z + λ+ σ]

dϕ

dz
+ λ (ρ− λ+ 1)ϕ = 0(9.7)

(z ∈ C \ {0, 1}; ρ ̸= 0; λ ∈ R)

has solutions of the form:

(9.8) ϕ (z) = K

(
z−σ · (1− z)

ρ+σ

)
λ−1

(z ∈ C \ {0, 1}; ρ ̸= 0; λ ∈ R) ,

where K is an arbitrary constant, it being provided that the second member of (9.8)
exists.

Remark 9.2. If we consider the case when |z| < 1, by making use of the familiar
binomial expansion, we find from the assertion (9.8) of Theorem 9.1 that

(9.9) ϕ(z) = K
∞∑

n=0

(−1)n
(
ρ+ σ

n

)(
zn−σ

)
λ−1

(|z| < 1).

Thus, in view of the following well-exploited fractional differintegral formula:
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(
zλ
)
ν
= e−iπν Γ(ν − λ)

Γ(−λ)
zλ−ν(9.10) (

ν ∈ R; z ∈ C;
∣∣∣∣Γ(ν − λ)

Γ(−λ)

∣∣∣∣ <∞
)
.

we readily obtain

ϕ(z) = K e−iπ(λ−1) Γ(λ+ σ − 1)

Γ(σ)
z1−λ−σ

· 2F1 (−ρ− σ, 1− σ; 2− λ− σ; z) (|z| < 1)(9.11)

in terms of the Gauss hypergeometric function 2F1 (see [18, Vol. I, Chapter 2]).

Remark 9.3. If we consider the case when |z| > 1, by appropriately applying the
familiar binomial expansion once again, we find from the assertion (9.8) of Theorem
9.1 that

(9.12) ϕ(z) = K e−iπ(ρ+σ)
∞∑

n=0

(−1)n
(
ρ+ σ

n

)(
zρ−n

)
λ−1

(|z| > 1).

Thus, in view of the fractional differintegral formula (9.10), we find the following
explicit solution of the differential equation (9.7) when |z| > 1:

ϕ(z) = K e−iπ(λ+ρ+σ−1) Γ(λ− ρ− 1)

Γ(−ρ)
zρ−λ+1

· 2F1

(
−ρ− σ, λ− ρ− 1;−ρ; 1

z

)
(|z| > 1),(9.13)

in terms of the Gauss hypergeometric function 2F1 (see [18, Vol. I, Chapter 2]).

10. A Family of Unified Alternative Solutions Resulting from Theorem
6.5

We now propose to develop alternative solutions of several classical differential
equations of mathematical physics in a unified manner by suitably applying the
assertions of Theorem 9.1, Remark 9.2, and Remark 9.3.

I. Gauss’s Differential Equation [see also Equation (7.1)]:

(10.1) z(1− z)
d2φ

dz2
+ [γ − (α+ β + 1)z]

dφ

dz
− αβφ = 0,

which possesses the following well-known power-series solution relative to the regular
singular point z = 0 (see, for example, [30, p. 162]):

(10.2) φ(1)(z) = 2F1 (α, β; γ; z) (|z| < 1).
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Furthermore, upon setting

λ = α, ρ = α− β − 1 and σ = γ − α

in (9.11), we obtain the following explicit solution of (10.1):

(10.3) φ(2)(z) = z1−γ
2F1 (α− γ + 1, β − γ + 1; 2− γ; z) (|z| < 1).

Thus, by combining the linearly independent solutions φ(1)(z) and φ(2)(z), we find
the following well-known general solution of the Gauss differential equation (10.1)
by means of fractional calculus:

φ(z) = K1 φ
(1)(z) +K2 φ

(2)(z)

= K1 2F1 (α, β; γ; z) +K2 z
1−γ

2F1 (α− γ + 1, β − γ + 1; 2− γ; z) (|z| < 1),

(10.4)

where K1 and K2 are arbitrary constants, it being understood that each member
of (10.4) exists.

Alternatively, if we set

λ = β, ρ = β − α− 1 and σ = γ − β

in (9.13), then we obtain the following explicit solution of (10.1) [30, p. 162]:

(10.5) φ(3)(z) = z−α
2F1

(
α, α− γ + 1;α− β + 1;

1

z

)
(|z| > 1).

If, on the other hand, we choose to set

λ = α, ρ = α− β − 1 and σ = γ − α

in (9.12), then we obtain the following further explicit solution of (10.1) [30, p. 162]:

(10.6) φ(4)(z) = z−β
2F1

(
β − γ + 1, β;β − α+ 1;

1

z

)
(|z| > 1),

which does indeed follow also from (10.5) upon interchanging the rôles of the param-
eters α and β. Thus, if we combine the solutions φ(3)(z) and φ(4)(z) appropriate to
the point at infinity, we find the following general solution of the Gauss differential
equation (10.1) by means of fractional calculus:

φ(z) = K∗
1 φ

(3)(z) +K∗
2 φ

(4)(z)

= K∗
1 z

−α
2F1

(
α, α− γ + 1;α− β + 1;

1

z

)
+K∗

2 z
−β

2F1

(
β − γ + 1, β;β − α+ 1;

1

z

)
(|z| > 1),(10.7)
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where K∗
1 and K∗

2 are arbitrary constants, it being understood that each member
of (10.7) exists.

Lastly, since any solution of the Gauss differential equation (10.1) is linearly
expressible in terms of two linearly independent solutions (see, for example, [30,
p. 168]), it is not difficult to deduce from the above observations that (see, for
example, [18, Vol. I, p. 108, Equation 2.10 (2)])

2F1 (α, β; γ; z) = A (−z)−α
2F1

(
α, α− γ + 1;α− β + 1;

1

z

)
+B (−z)−β

2F1

(
β − γ + 1, β;β − α+ 1;

1

z

)
(10.8)

(
|z| > 1; | arg(−z)| 5 π − ϵ; 0 < ϵ < π

)
,

where, for convenience, the coefficients A and B are given by

(10.9) A :=
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
and B :=

Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
.

The analytic continuation formula (10.8) is usually derived by the calculus of
residues and the Mellin-Barnes contour integral representation for the Gauss hy-
pergeometric function occurring on its left-hand side (see, for details, [18, Vol. I,
p. 62, Section 2.1.4]). Moreover, it is easily seen from this analytic continuation
formula (10.8) that asymptotically, for large |z|, we have

(10.10) 2F1 (α, β; γ; z) ∼ A (−z)−α +B (−z)−β(
|z| → ∞; | arg(−z)| 5 π − ϵ; 0 < ϵ < π

)
,

where the coefficients A and B are given (as before) by (10.9).

II. Jacobi’s Differential Equation:

(10.11) (1− z2)
d2Θ

dz2
+ [β − α− (α+ β + 2)z]

dΘ

dz
+ ν(ν + α+ β + 1)Θ = 0,

which, in its special case when ν = n ∈ N0, would reduce to the relatively more

familiar differential equation satisfied by the classical Jacobi polynomials P
(α,β)
n (z)

given explicitly by

P (α,β)
n (z) =

n∑
k=0

(
n+ α

k

)(
n+ β

n− k

)(
z − 1

2

)n−k (
z + 1

2

)k

=

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− z

2

)
.(7.12)

Indeed, upon setting

z 7−→ 1− 2z,
d

dz
7−→ −1

2

d

dz
,

d2

dz2
7−→ 1

4

d2

dz2
and Θ 7−→ Φ,
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Jacobi’s differential equation (10.11) assumes the following form:

(10.12) z(1− z)
d2Φ

dz2
+ [α+ 1− (α+ β + 2)z]

dΦ

dz
+ ν(ν + α+ β + 1)Φ = 0.

Clearly, we have

(10.13) Θ(1− 2z) = Φ(z) and Θ(z) = Φ

(
1− z

2

)
.

By setting

λ = ν + α+ β + 1, ρ = 2ν + α+ β and σ = −ν − β

in (9.11) and (9.13), or (alternatively) by directly applying the hypergeometric so-
lutions given by (10.2), (10.3), (10.5) and (10.6), we obtain the following explicit
solutions of (10.12):

(10.14) Φ(1)(z) = 2F1 (−ν, ν + α+ β + 1;α+ 1; z) (|z| < 1),

(10.15) Φ(2)(z) = z−α
2F1 (−ν − α, ν + β + 1; 1− α; z) (|z| < 1),

(10.16) Φ(3)(z) = zν 2F1

(
−ν,−ν − α;−2ν − α− β;

1

z

)
(|z| > 1)

and

Φ(4)(z) = z−ν−α−β−1

· 2F1

(
ν + β + 1, ν + α+ β + 1; 2ν + α+ β + 2;

1

z

)
(|z| > 1).(10.17)

Thus, if we make use of the relationships given by (10.13) in our observations (10.14)
to (10.17), we are led fairly easily to the following explicit solutions of the general
Jacobi differential equation (10.11):

(10.18) Θ(1)(z) = 2F1

(
−ν, ν + α+ β + 1;α+ 1;

1− z

2

)
(|1− z| < 2),

(10.19)

Θ(2)(z) = (1− z)−α
2F1

(
−ν − α, ν + β + 1; 1− α;

1− z

2

)
(|1− z| < 2),
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(10.20)

Θ(3)(z) = (1− z)ν 2F1

(
−ν,−ν − α;−2ν − α− β;

2

1− z

)
(|1− z| > 2)

and

Θ(4)(z) = (1− z)−ν−α−β−1

· 2F1

(
ν + β + 1, ν + α+ β + 1; 2ν + α+ β + 2;

2

1− z

)
(|1− z| > 2).

(10.21)

Remark 10.1. The solution Θ(1)(z) given by (10.18) can indeed be rewritten in

terms of the classical Jacobi function P
(α,β)
ν (z) (ν ∈ C) defined by

P (α,β)
ν (z) :=

∞∑
k=0

(
ν + α

k

)(
ν + β

ν − k

)(
z − 1

2

)ν−k (
z + 1

2

)k

=

(
ν + α

ν

)
2F1

(
−ν, ν + α+ β + 1;α+ 1;

1− z

2

)
(ν ∈ C).(10.22)

Remark 10.2. In view of the familiar Euler transformation (see, for example, [18,
Vol. I, p. 64, Equation 2.1.4 (23)]):

(10.23) 2F1(α, β; γ; z) = (1− z)γ−α−β
2F1(γ − α, γ − β; γ; z)(

| arg(1− z)| 5 π − ϵ; 0 < ϵ < π
)
,

we can rewrite the solution Θ(4)(z) given by (10.21) in the following equivalent form:
(10.24)

Θ(4)(z) =
2ν+α+β+1 eiπβ

(1− z)ν+α+1(1 + z)β
2F1

(
ν + 1, ν + α+ 1; 2ν + α+ β + 2;

2

1− z

)
(|1− z| > 2; ν ∈ C),

which obviously is expressible in terms of the Jacobi function of the second kind
defined by (cf., e.g., [18, Vol. II, p. 170, Equation 10.8 (18)])

Q(α,β)
ν (z) :=

2ν+α+β Γ(ν + α+ 1)Γ(ν + β + 1)

(z − 1)ν+α+1(z + 1)β Γ(2ν + α+ β + 2)

· 2F1

(
ν + 1, ν + α+ 1; 2ν + α+ β + 2;

2

1− z

)
(10.25)
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(|1− z| > 2; ν ∈ C).

In concluding this section, we observe that such general results as Theorems 7.2,
7.3 and 7.4 and their various companions (proven by Tu et al. [99]) can be applied
similarly in order to derive explicit solutions of many other interesting families of
ordinary and partial differential equations.

11. Further Miscellaneous Applications of Fractional Calculus

For the purpose of those in the audience who are interested in pursuing inves-
tigations on the subject of fractional calculus, we give here references to some of
the other applications of fractional calculus operators in the mathematical sciences,
which are not mentioned in the preceding sections.

(i) Theory of Generating Functions of Orthogonal Polynomials and Special Func-
tions (see, for details, [91]);

(ii) Geometric Function Theory (especially the Theory of Analytic, Univalent,
and Multivalent Functions) (see, for details, [92, 93]);

(iii) Integral Equations (see, for details, [25, 83, 84]);

(iv) Integral Transforms (see, for details, [32, 50]);

(v) Generalized Functions (see, for details, [50]);

(vi) Theory of Potentials (see, for details, [66]).

12. Other Recent Developments

In the past several decades, various real-world issues have been modeled in many
areas by using some very powerful tools. One of these tools is fractional calculus.
Several important definitions have been introduced for fractional-order derivatives,
including: the Riemann-Liouville, the Grünwald-Letnikov, the Liouville-Caputo,
the Caputo-Fabrizio and the
Atangana-Baleanu fractional-order derivatives (see, for example, [7, 12, 14, 31, 64,
112]).

By using the fundamental relations of the Riemann-Liouville fractional inte-
gral, the Riemann-Liouville fractional derivative was constructed, which involves
the convolution of a given function and a power-law kernel (see, for details, [31, 64]).
The Liouville-Caputo (LC) fractional derivative involves the convolution of the lo-
cal derivative of a given function with a power-law function [13]. Recently, Ca-
puto and Fabrizio [12] and Atangana and Baleanu [7] proposed some interesting
fractional-order derivatives based upon the exponential decay law which is a gen-
eralized power-law function (see [1, 3, 4, 5, 6, 8]). The Caputo-Fabrizio (CFC)
fractional-order derivative as well as the Atangana-Baleanu (ABC) fractional-order
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derivative allow us to describe complex physical problems that follow, at the same
time, the power law and the exponential decay law (see, for details, [1, 3, 4, 5, 6, 8]).

In a noteworthy earlier investigation, Srivastava and Saad [95] investigated
the model of the gas dynamics equation (GDE) by extending it to some new
models involving the time-fractional gas dynamics equation (TFGDE) with the
Liouville-Caputo (LC), Caputo-Fabrizio (CFC) and Atangana-Baleanu (ABC) time-
fractional derivatives. They employed the Homotopy Analysis Transform Method
(HATM) in order to calculate the approximate solutions of TFGDE by using LC,
CFC and ABC in the Liouville-Caputo sense and studied the convergence analysis
of HATM by finding the interval of convergence through the h-curves. Srivastava
and Saad [95] also showed the effectiveness and accuracy of this method (HATM)
by comparing the approximate solutions based upon the LC, CFC and ABC time-
fractional derivatives.

Given the homogeneous time-fractional gas dynamics equation (TFGDE) as
follows:

(12.1)
∂αψ

∂τα
+ ψ

∂ψ

∂ς
− ψ(1− ψ) = 0,

where

(12.2) (ς, τ) ∈ (0,∞)× (0, τ0) and 0 < α 5 1.

Srivastava and Saad [95] used the HATM (see, for example, [38, 67]) in order to
solve the LC, CFC and ABC analogues of the TFGDE (12.1). They obtained these

analogous equations by replacing the time-fractional derivative
∂αψ

∂τα
in the TFGDE

(12.1) by
LC
0D

α

τ ψ,
CFC

0D
α
τ ψ and ABC

0D
α
τ ψ,

successively, where the order α of the time-fractional derivatives is constrained by

n− 1 < α 5 n (n ∈ N := {1, 2, 3, · · · }).

The corresponding LC, CFC and ABC time-fractional analogues of the TFGDE
(12.1) are given by

LC
0D

α
τ ψ + ψ

∂ψ

∂ς
− ψ(1− ψ) = 0 (0 < α 5 1; ς ∈ R; τ > 0),(12.3)

CFC
0D

α
τ ψ + ψ

∂ψ

∂ς
− ψ(1− ψ) = 0 (0 < α 5 1; ς ∈ R; τ > 0)(12.4)

ABC
0D

α
τ ψ + ψ

∂ψ

∂ς
− ψ(1− ψ) = 0 (0 < α 5 1; ς ∈ R; τ > 0),(12.5)
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respectively. Here
LC
0D

α
τ and CFC

0D
α
τ

denote the time-fractional derivatives of order α for a suitably defined function f(τ),
which are defined, respectively, by

LC
0D

α
τ

(
f(τ)

)
= Jm−αDm

(
f(τ)

)
=

1

Γ(m− α)

∫ τ

0

(τ − t)m−α−1 f(m)(t) dt

(m− 1 < α 5 m; m ∈ N; f ∈ Cm
µ ; µ = −1)

and

CFC
0D

α
τ

(
f(τ)

)
=
M(α)

1− α

∫ τ

0

exp

(
−α(τ − t)

1− α

)
D
(
f(t)
)
dt

where M(α) is a normalization function such that M(0) = M(1) = 1 and
ABC

0D
α
τ

(
f(τ)

)
is known as the ABC time-fractional derivative of order α in the

Liouville-Caputo sense given, for a suitably defined function f(τ), by

ABC
0D

α
τ

(
f(τ)

)
=
M(α)

1− α

∫ τ

0

Eα

(
−α(τ − t)

1− α

)
D
(
f(t)
)
dt,

where

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)

is the Mittag-Leffler function and M(α) is a normalization function with the same
properties as in the Liouville-Caputo (LC) and the Caputo-Fabrizio (CFC) cases.
For the details of this and other closely-related investigations, the interested reader
should see the work by Srivastava and Saad [95].

In the bibliography of this presentation, we have chosen to include a remarkably
large number of recently-published books, monographs and edited volumes (as well
as journal articles) dealing with the extensively-investigated subject of fractional
calculus and its widespread applications. Indeed, judging by the on-going contri-
butions to the theory and applications of Fractional Calculus and Its Applications,
which are continuing to appear in some of the leading journals of mathematical,
physical, statistical and engineering sciences, the importance of the subject-matter
dealt with in this survey-cum-expository article cannot be over-emphasized.
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method to nonhomogeneous Fukuhara equations, I, J. Fract. Calc., 9(1996), 23–31.

[58] K. Nishimoto and S. Salinas de Romero, N -Fractional calculus operator Nν method to
nonhomogeneous and homogeneous Whittaker equations, I, J. Fract. Calc., 9(1996),
17–22.

[59] K. Nishimoto, S. Salinas de Romero, J. Matera and A. I. Prieto, N -Method to the
homogeneous Whittaker equations, J. Fract. Calc., 15(1999), 13–23.

[60] K. Nishimoto, S. Salinas de Romero, J. Matera and A. I. Prieto, N -Method to the
homogeneous Whittaker equations (revise and supplement), J. Fract. Calc., 16(1999),
123–128.

[61] K. Nishimoto, H. M. Srivastava and S.-T. Tu, Application of fractional calculus in
solving certain classes of Fuchsian differential equations, J. College Engrg. Nihon
Univ. Ser. B, 32(1991), 119–126.

[62] K. Nishimoto, H. M. Srivastava and S.-T. Tu, Solutions of some second-order linear
differential equations by means of fractional calculus, J. College Engrg. Nihon Univ.
Ser. B, 33(1992), 15–25.

[63] K. B. Oldham and J. Spanier, The fractional calculus: theory and applications of
differentiation and integration to arbitrary order, Academic Press, New York and
London, 1974.

[64] I. Podlubny, Fractional differential equations: an introduction to fractional deriva-
tives, fractional differential equations, to methods of their solution and some of their
applications, Mathematics in Science and Engineering 198, Academic Press, New
York, London, Sydney, Tokyo and Toronto, 1999.

[65] A. I. Prieto, S. Salinas de Romero and H. M. Srivastava, Some fractional calculus
results involving the generalized Lommel-Wright and related functions, Appl. Math.
Lett., 20(2007), 17–22.

[66] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in
Pure and Applied Mathematics, Longman Scientific and Technical, Harlow (Essex),
1996.

[67] K. M. Saad and A. A. Al-Shomrani, An application of homotopy analysis transform
method for Riccati differential equation of fractional order, J. Fract. Calc. Appl.,
7(2016), 61–72.

[68] A. Saichev and M. Zaslavsky, Fractional kinetic equations: solutions and applications,
Chaos, 7(1997), 753–764.

[69] S. Salinas de Romero and K. Nishimoto, N -Fractional calculus operator Nν method
to nonhomogeneous and homogeneous Whittaker equations II, some illustrative ex-
amples, J. Fract. Calc., 12(1997), 29–35.



114 Hari Mohan Srivastava

[70] S. Salinas de Romero and H. M. Srivastava, An application of theN -fractional calculus
operator method to a modifiedWhittaker equation, Appl. Math. Comput., 115(2000),
11–21.

[71] V. P. Saxena, A trivial extension of Saxena’s I-function, Nat. Acad. Sci. Lett.,
38(2015), 243–245.

[72] R. K. Saxena, J. P. Chauhan, R. K. Jana and A. K. Shukla, Further results on the
generalized Mittag-Leffler function operator, J. Inequal. Appl., (2015), 2015:75, 12
pp.

[73] R. K. Saxena and S. L. Kalla, On the solutions of certain fractional kinetic equations,
Appl. Math. Comput., 199(2008), 504–511.

[74] R. K. Saxena, A. M. Mathai and H. J. Haubold, On fractional kinetic equations,
Astrophys. Space Sci., 282(2002), 281–287.

[75] R. K. Saxena, A. M. Mathai and H. J. Haubold, On generalized fractional kinetic
equations, Phys. A, 344(2004), 653–664.

[76] R. K. Saxena, A. M. Mathai and H. J. Haubold, Unified fractional kinetic equation
and a fractional diffusion equation, Astrophys. Space Sci., 290(2004), 299–310.

[77] R. K. Saxena and K. Nishimoto, N -Fractional calculus of generalized Mittag-Leffler
functions, J. Fract. Calc., 37(2010), 43–52.

[78] R. K. Saxena, J. Ram and D. Kumar, Alternative derivation of generalized kinetic
equations, J. Fract. Calc. Appl., 4(2013), 322–334.

[79] R. K. Saxena, J. Ram and M. Vishnoi, Fractional differentiation and fractional inte-
gration of the generalized Mittag-Leffler function, J. Indian Acad. Math., 32(2010),
153–162.

[80] J. L. Schiff, The Laplace transform: theory and applications, Springer-Verlag, Berlin,
Heidelberg and New York, 1999.

[81] A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and
its properties, J. Math. Anal. Appl., 336(2007), 797–811.

[82] H. M. Srivastava, On an extension of the Mittag-Leffler function, Yokohama Math.
J., 16(1968), 77–88.

[83] H. M. Srivastava and R. G. Buschman, Convolution integral equations with special
function kernels, Halsted Press, John Wiley and Sons, New York, 1977.

[84] H. M. Srivastava and R. G. Buschman, Theory and applications of convolution integral
equations, Kluwer Series on Mathematics and Its Applications 79, Kluwer Academic
Publishers, Dordrecht, Boston and London, 1992.

[85] H. M. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and
integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

[86] H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu and X.-J. Yang, Local fractional
Sumudu transform with application to IVPs on Cantor sets, Abstr. Appl. Anal.,
(2014), Art. ID 620529, 7 pp.

[87] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of one and two
variables with applications, South Asian Publishers, New Delhi and Madras, 1982.



Fractional-Order Derivatives and Integrals 115

[88] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series, Hal-
sted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York,
Chichester, Brisbane and Toronto, 1985.

[89] H. M. Srivastava and B. R. K. Kashyap, Special functions in queuing theory and
related stochastic processes, Academic Press, New York, London and Toronto, 1982.

[90] H. M. Srivastava, S.-D. Lin, Y.-T. Chao and P.-Y. Wang, Explicit solutions of a
certain class differential equations by means of fractional calculus, Russian J. Math.
Phys., 14(2007), 357–365.

[91] H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Halsted Press
(Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester,
Brisbane and Toronto, 1984.

[92] H. M. Srivastava and S. Owa (Editors), Univalent functions, fractional calculus, and
their applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley
and Sons, New York, Chichester, Brisbane and Toronto, 1989.

[93] H. M. Srivastava and S. Owa (Editors), Current topics in analytic function theory,
World Scientific Publishing Company, Singapore, New Jersey, London and Hong
Kong, 1992.

[94] H. M. Srivastava, S. Owa and K. Nishimoto, Some fractional differintegral equations,
J. Math. Anal. Appl., 106(1985), 360–366.

[95] H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dy-
namics equation, Adv. Math. Models Appl., 3(1)(2018), 5–17.
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