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ON COMPLETE CONVERGENCE FOR EXTENDED

INDEPENDENT RANDOM VARIABLES UNDER

SUB-LINEAR EXPECTATIONS

Xin Deng and Xuejun Wang

Abstract. In this paper, we establish complete convergence for sequen-
ces of extended independent random variables and arrays of rowwise ex-

tended independent random variables under sub-linear expectations in

Peng’s framework. The results obtained in this paper extend the corre-
sponding ones of Baum and Katz [1] and Hu and Taylor [11] from classical

probability space to sub-linear expectation space.

1. Introduction

Additive probabilities and linear expectations are basic assumptions in clas-
sical probability theory. However, in fact, the additivity of probabilities and
expectations has been abandoned in some areas because many uncertain phe-
nomena cannot be well modeled by using additive probabilities and additive
expectations. Recently, motivated by some problems in statistics, measures of
risk, mathematical economics, super-hedging in finance and non-linear stochas-
tic calculus, more and more researchers adopted non-additive probability and
non-linear expectation to describe and interpret some uncertain phenomena in
these fields which cannot be modeled exactly by classical probability theory.
We refer the readers to Chen and Epstein [2], Huber [12], Huber and Strassen
[13], Denis and Martini [5], Gilboa [6] and Marinacci [14] for instance.

A new notion of sub-linear expectation and related general theoretical frame-
work of the sub-linear expectation space were proposed in Peng [15–20], and
carefully studied by many scholars. For example, Hu [9] obtained Cramér’s up-
per bound for capacities induced by sub-linear expectations, Hu and Zhang [10]
established the central limit theorem for capacities, Chen and Hu [3] developed
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a law of the iterated logarithm for capacities with the notion of independent and
identically distributed random variables under sub-linear expectations, Zhang
[24] introduced the concept of negative dependence of random variables and es-
tablished Kolmogorov’s and Rosenthal’s inequalities for the maximum partial
sums of negatively dependent random variables under the sub-linear expecta-
tions, Zhang [25] studied the strong law of large numbers and the law of the it-
erated logarithm for extended independent and extended negatively dependent
random variables under non-linear expectations, Wu and Jiang [21] established
general strong law of large numbers and Chover’s law of the iterated loga-
rithm for a sequence of random variables under sub-linear expectations, Wu et
al. [22] investigated the approximations of inverse moments for double-indexed
weighted sums of random variables under sub-linear expectations, Zhong and
Wu [26] studied complete convergence and complete moment convergence for
weighted sums of extended negatively dependent random variables under sub-
linear expectations, Xi et al. [23] obtained some results on complete conver-
gence for arrays of rowwise extended negatively dependent random variables
under sub-linear expectations and gave its statistical applications to nonpara-
metric regression models. However, under sub-linear expectations, there are
few available results related to complete convergence introduced by Hsu and
Robbins [7]. This work aims to give complete convergence results of random
variables under two cases in the sub-linear expectation space. As we all know,
strong laws of large numbers can be also deduced from complete convergence
by the corresponding Borel-Cantelli lemma (see Zhang [24]) in the sub-linear
expectation space. Therefore, establishing complete convergence results under
sub-linear expectations is of great interest.

We use the framework and notations of Peng [18]. Let (Ω,F) be a given
measurable space and let H be a linear space of real functions defined on
(Ω,F) such that if X1, X2, . . . , Xn ∈ H, then ϕ(X1, X2, . . . , Xn) ∈ H for each
ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz)
functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C (1 + |x|m + |y|m) |x− y|, ∀x,y ∈ Rn

for some C > 0, m ∈ N depending on ϕ. H is considered as a space of “random
variables”.

Definition 1.1. A sub-linear expectation Ê on H is a function Ê: H → R̄
satisfying the following properties: for all X,Y ∈ H, we have

(a) Monotonicity: if X ≥ Y , then Ê[X] ≥ Ê[Y ];

(b) Constant preserving: Ê[c] = c;

(c) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ], whenever Ê[X] + Ê[Y ] is not
of the form +∞−∞ or −∞+∞;

(d) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0.

Here R̄ = [−∞,∞]. The tripe (Ω,H, Ê) is called a sub-linear expectation

space. Given a sub-linear expectation Ê, denote the conjugate expectation ε̂ of
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Ê by

ε̂[X]
.
= −Ê[−X], ∀X ∈ H.

From the definition, it is easily shown that ε̂[X] ≤ Ê[X], Ê[X + c] = Ê[X] + c

and Ê[X − Y ] ≥ Ê[X] − Ê[Y ] for all c ∈ R and all X,Y ∈ H with Ê[Y ] being

finite. Further, if Ê[|X|] is finite, then ε̂[X] and Ê[X] are both finite.
Next, we consider the capacities corresponding to the sub-linear expecta-

tions. Let G be some subset of F .

Definition 1.2. A function V : G → [0, 1] is called a capacity if

V (∅) = 0, V (Ω) = 1 and V (A) ≤ V (B) for any A ⊂ B, A,B ∈ G.
It is called to be sub-additive if V (A

⋃
B) ≤ V (A) + V (B) for all A,B ∈ G

with A
⋃
B ∈ G. It is called to be countably sub-additive if for any An ∈ G,

n = 1, 2, . . .,

(1.1) V

( ∞⋃
n=1

An

)
≤
∞∑
n=1

V (An).

In the sub-linear space (Ω,H, Ê), we denote a pair (V, ν) of capacities by

V(A)
.
= inf

{
Ê[ξ] : IA ≤ ξ, ξ ∈ H

}
, ν(A)

.
= 1− V(Ac), ∀ A ∈ F ,

where Ac is the complement set of A. Then

Ê[f ] ≤ V(A) ≤ Ê[g], ε̂[f ] ≤ ν(A) ≤ ε̂[g] if f ≤ IA ≤ g and f, g ∈ H.
It is obvious that V is sub-additive.

Also, we define the Choquet integrals/expectations (CV, Cν) by

CV (X) =

∫ ∞
0

V (X ≥ t)dt+

∫ 0

−∞
[V (X ≥ t)− 1]dt

with V being replaced by V and ν, respectively. It can be verified that if
lim
c→∞

Ê[(|X|−c)+] = 0, then Ê[|X|] ≤ CV(|X|), which can be referred to Lemma

3.9 of Zhang [24].
The concepts of independence and identical distribution under sub-linear

expectations were introduced by Peng [16] and [18].

Definition 1.3 (cf. Peng [16] and [18]).
(i) (Identical distribution) Let X1 and X2 be two n-dimensional random

vectors defined respectively in sub-linear expectation spaces (Ω1,H1, Ê1) and

(Ω2,H2, Ê2). They are called identically distributed, denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-linear expectations above are finite. A sequence {Xn, n ≥ 1}
of random variables is said to be identically distributed if Xi

d
= X1 for each

i ≥ 1.
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(ii) (Independence) In a sub-linear expectation space (Ω,H, Ê), a random
vector Y = (Y1, Y2, . . . , Yn), Yi ∈ H is said to be independent to another

random vector X = (X1, X2, . . . , Xm), Xi ∈ H under Ê if for each test function
ϕ ∈ Cl,Lip(Rm × Rn),

Ê[ϕ(X,Y)] = Ê
[
Ê[ϕ(x,Y)]|x=X

]
,

whenever ϕ̄(x)
.
= Ê[|ϕ(x,Y)|] for all x and Ê[|ϕ̄(X)|] < ∞. A sequence

{Xn, n ≥ 1} of random variables is said to be independent, if Xi+1 is inde-
pendent to (X1, X2, . . . , Xi) for each i ≥ 1.

Zhang [25] introduced a concept of extended independence, which is much
weaker and easier to verify than the above independence structure.

Definition 1.4 (Extended Independence, cf. Zhang [25]). In a sub-linear ex-

pectation space (Ω,H, Ê), a sequence {Xn, n ≥ 1} of random variables is said
to be extended independent (EI, for short), if for any n ≥ 1,

(1.2) Ê

[
n∏
i=1

ψi(Xi)

]
=

n∏
i=1

Ê [ψi(Xi)] ,

whenever ψi ∈ Cl,Lip(R) (i = 1, 2, . . . , n) are all non-negative functions.
An array {Xni, 1 ≤ i ≤ n, n ≥ 1} of random variables is said to be rowwise

extended independent, if for any fixed n ≥ 1, {Xni, 1 ≤ i ≤ n} are extended
independent random variables.

It is easy to check that the independence implies extended independence.
The independence in the sense of (1.2) was proposed by Chen et al. [4]. But
their function space of ψi’s is assumed to be the family of all non-negative Borel
functions. Here Zhang [25] used the same function space as Peng’s.

In the paper, we aim to establish the complete convergence for sequences
of EI random variables and arrays of rowwise EI random variables under sub-
linear expectations in Peng’s framework. The results of the paper mainly ex-
tend the corresponding ones of Baum and Katz [1] and Hu and Taylor [11] from
classical probability space to sub-linear expectation space, and make some im-
provements.

This work is organized as follows. In next section, we give some preliminary
lemmas, which are useful to prove our main results. Main results on complete
convergence for sequences of EI random variables and arrays of rowwise EI
random variables are provided in Section 3. Detailed proofs of main results are
put in the last section.

Throughout the paper, C stands for a positive constant whose value may
vary at each occurrence.

2. Preliminaries

In this section, we will present some important lemmas which will be used to
prove the main results of the paper. In addition, Höder’s inequality, Markov’s
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inequality and Jensen’s inequality are still true under sub-linear expectations,
see Zhang [24] and Hu [8] for instance.

The first one is a basic property for EI random variables, which can be found
in Zhang [25].

Lemma 2.1 (cf. Zhang [25]). Let {Xn, n ≥ 1} be a sequence of EI random vari-
ables. Then {fn(Xn), n ≥ 1} are still EI random variables if f1(x), f2(x), . . . ∈
Cl,Lip(R).

The next one is the triangle inequality for two random variables in sub-linear
expectation space (Ω,H, Ê).

Lemma 2.2. For any random variables X, Y ∈ H, the following inequalities
hold:

(i)
∣∣∣Ê[X − Y ]

∣∣∣ ≤ ∣∣∣Ê[X]
∣∣∣+ Ê[|Y |];

(ii)
∣∣∣Ê[X + Y ]

∣∣∣ ≤ ∣∣∣Ê[X]
∣∣∣+ Ê[|Y |].

Proof. (i) It follows from the sub-additivity of Ê that

Ê[X]− Ê[Y ] ≤ Ê[X − Y ] ≤ Ê[X] + Ê[−Y ].

Thus by the monotonicity of Ê, we have∣∣∣Ê[X − Y ]
∣∣∣ ≤ max

{∣∣∣Ê[X]− Ê[Y ]
∣∣∣ , ∣∣∣Ê[X] + Ê[−Y ]

∣∣∣} ≤ ∣∣∣Ê[X]
∣∣∣+ Ê[|Y |].

(ii) Replacing Y by −Y in (i), we can obtain (ii) immediately.
The proof is completed. �

The following one is the exponential inequality for EI random variables,
whose detailed proof is similar to that of Theorem 3.1 in Zhang [25].

Lemma 2.3 (Exponential inequality). Assume that {Xn, n ≥ 1} is a sequence

of EI random variables in (Ω,H, Ê) with Ê[Xi] ≤ 0 for each i ≥ 1, Sn =∑n
i=1Xi, and Bn =

∑n
i=1 Ê[X2

i ]. Then for all x, y > 0,

(2.1) V(Sn ≥ x) ≤ V
(

max
1≤i≤n

|Xi| > y

)
+ e

x
y

(
Bn
xy

) x
y

.

In particular, taking y = x > 0, we have for any x > 0 that

(2.2) V(Sn ≥ x) ≤ (1 + e)
Bn
x2
.

The next one is the Borel-Cantelli Lemma under sub-additive capacity, which
can be found in Zhang [24].

Lemma 2.4 (Borel-Cantelli Lemma, cf. Zhang [24]). Let {An, n ≥ 1} be a
sequence of events in F . Suppose that V is a countably sub-additive capacity.
If
∑∞
n=1 V (An) <∞, then

V (An, i.o.) = 0,

where (An, i.o.) =
⋂∞
n=1

⋃∞
m=nAm.
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The last one is the Rosenthal’s inequality for independent random variables,
which can be referred to Zhang [24].

Lemma 2.5 (Rosenthal’s inequality, cf. Zhang [24]). Assume that {Xn, n ≥ 1}
is a sequence of independent random variables in (Ω,H, Ê) with Ê[Xi] ≤ 0 for
each i ≥ 1, and Sn =

∑n
i=1Xi. Then for each n ≥ 1,

(2.3) Ê[(S+
n )p] ≤ Cp

 n∑
i=1

Ê[|Xi|p] +

(
n∑
i=1

Ê[X2
i ]

)p/2 for p ≥ 2.

3. Main results

In this section, we will present the main results of the paper, including com-
plete convergence for sequences of EI random variables and arrays of rowwise
EI random variables.

3.1. Complete convergence for sequences of EI random variables

Theorem 3.1. Let αp > 1 and α > 1/2. Assume that {Xn, n ≥ 1} is a
sequence of identically distributed EI random variables with CV(|X1|p) < ∞
and limc→∞ Ê

[
(|X1|p − c)+

]
= 0.

(i) If 0 < p < 1, then for any ε > 0,

(3.1)

∞∑
n=1

nαp−2V

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > εnα

)
<∞.

(ii) If p ≥ 1, then for any ε > 0,

(3.2)
∞∑
n=1

nαp−2V

((
n∑
i=1

(Xi − Ê[Xi]) > εnα

)⋃(
n∑
i=1

(Xi − ε̂[Xi]) < −εnα
))

<∞.

Furthermore, if Ê[X1] = ε̂[X1] = 0, then (3.1) holds for any ε > 0.

Taking α = 1 and p = 2 in Theorem 3.1, we can obtain the following
corollary.

Corollary 3.1. Assume that {Xn, n ≥ 1} is a sequence of identically dis-

tributed EI random variables with CV(X2
1 ) <∞ and limc→∞ Ê

[(
X2

1 − c
)+]

=

0. If V is countably sub-additive, then

(3.3) V

((
lim sup
n→∞

1

n

n∑
i=1

Xi > Ê[X1]

)⋃(
lim inf
n→∞

1

n

n∑
i=1

Xi < ε̂[X1]

))
= 0

and

(3.4) ν

(
ε̂[X1] ≤ lim inf

n→∞

1

n

n∑
i=1

Xi ≤ lim sup
n→∞

1

n

n∑
i=1

Xi ≤ Ê[X1]

)
= 1.

For αp = 1, we have the following result.
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Theorem 3.2. Let αp = 1 and α > 1/2. Assume that {Xn, n ≥ 1} is a
sequence of identically distributed EI random variables with

lim
c→∞

Ê
[
(|X1|p − c)+

]
= 0.

(i) If 0 < p < 1, then CV(|X1|) <∞ implies that (3.1) holds for any ε > 0.
(ii) If p ≥ 1, then CV(|X1|p) <∞ implies that (3.2) holds for any ε > 0.

3.2. Complete convergence for arrays of rowwise EI random variables

Theorem 3.3. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise EI random

variables in (Ω,H, Ê) and {Ψi(t), i ≥ 1} be a sequence of positive even functions
such that

(3.5)
Ψi(|t|)
|t|q

↑, Ψi(|t|)
|t|p

↓ as |t| ↑

for some 1 ≤ q < p ≤ 2 and each i ≥ 1. Assume that {an, n ≥ 1} is a sequence
of positive real numbers such that 0 < an ↑ ∞, and

(3.6)

∞∑
n=1

n∑
i=1

Ê
[

Ψi(uXni)

Ψi(an)

]
<∞,

∞∑
n=1

n∑
i=1

Ê
[

Ψi(Xni)

Ψi(uan)

]
<∞

for some 0 < u < 1. Then for any ε > 0,

(3.7)
∞∑
n=1

V

((
1

an

n∑
i=1

(Xni − Ê[Xni]) > ε

)⋃(
1

an

n∑
i=1

(Xni − ε̂[Xni]) < −ε

))
<∞.

Corollary 3.2. Under the conditions of Theorem 3.3, if Ê[Xni] = ε̂[Xni] = 0,
then for any ε > 0,

(3.8)

∞∑
n=1

V

(∣∣∣∣∣ 1

an

n∑
i=1

Xni

∣∣∣∣∣ > ε

)
<∞.

Furthermore, if V is countably sub-additive, then

(3.9)
1

an

n∑
i=1

Xni → 0 a.s. ν, n→∞.

Remark 3.1. Since it is not sure whether Rosenthal’s inequality like (2.3) is
true or not for EI random variables, we couldn’t establish the result similarly
to Theorem 3.3 when p > 2. This is an open question proposed in the paper.

Here, we conjecture that the result may be the following form: Let {Xni, 1 ≤
i ≤ n, n ≥ 1} be an array of rowwise EI random variables in (Ω,H, Ê) and
{Ψi(t), i ≥ 1} be a sequence of positive even functions satisfying (3.5) for some
1 ≤ q < p, p > 2 and each i ≥ 1. Assume that {an, n ≥ 1} is a sequence of
positive real numbers satisfying 0 < an ↑ ∞, (3.6) and

(3.10)

∞∑
n=1

(
n∑
i=1

Ê

[(
Xni

an

)2
])s/2

<∞
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for some s ≥ p. Then for any ε > 0, (3.7) holds. The main reason for this is
that the above result holds for independent random variables, see Theorem 3.4
below.

Theorem 3.4. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent

random variables in (Ω,H, Ê) and {Ψi(t), i ≥ 1} be a sequence of positive even
functions satisfying (3.5) for some 1 ≤ q < p, p > 2 and each i ≥ 1. Assume
that {an, n ≥ 1} is a sequence of positive real numbers satisfying 0 < an ↑ ∞,
(3.6) and (3.10) for some s ≥ p. Then for any ε > 0, (3.7) holds.

Corollary 3.3. Under the conditions of Theorem 3.4, if Ê[Xni] = ε̂[Xni] = 0,
then (3.8) holds. Furthermore, if V is countably sub-additive, then (3.9) holds.

4. Proofs of main results

Proof of Theorem 3.1. When p ≥ 1, it is easy to observe that (3.2) is equivalent
to

(4.1)

∞∑
n=1

nαp−2V

(
n∑
i=1

(Xi − Ê[Xi]) > εnα

)
<∞

and

(4.2)

∞∑
n=1

nαp−2V

(
n∑
i=1

(Xi − ε̂[Xi]) < −εnα
)
<∞.

Furthermore, if (4.1) holds, then (4.2) is also true by replacing Xi by −Xi.
Hence, to prove (3.2), we only need to prove (4.1).

Similarly, to prove (3.1), it is sufficient to prove

(4.3)

∞∑
n=1

nαp−2V

(
n∑
i=1

Xi > εnα

)
<∞

when 0 < p < 1.
Without loss of generality, we assume that Ê[Xi] = 0 when p ≥ 1. Thus, to

prove (3.1) and (3.2), we only need to prove (4.3) for any p > 0.
For any r, ε > 0 and fixed n ≥ 1, denote for 1 ≤ i ≤ n that

Yni = −εn
α

4r
I

(
Xi < −

εnα

4r

)
+XiI

(
|Xi| ≤

εnα

4r

)
+
εnα

4r
I

(
Xi >

εnα

4r

)
,

Y
′

ni = Xi − Yni=
(
Xi+

εnα

4r

)
I

(
Xi < −

εnα

4r

)
+

(
Xi −

εnα

4r

)
I

(
Xi >

εnα

4r

)
.

Let gυ be a function such that gυ ∈ Cl,Lip(R), gυ = 1 if |x| ≥ 1, gυ = 0 if
|x| ≤ 1− υ, and 0 ≤ gυ ≤ 1 for all x, where 0 < υ < 1. Thus

(4.4)
I(|x| ≥ 1) ≤ gυ(x) ≤ I(|x| > 1− υ),

I(|x| ≤ 1− υ) ≤ 1− gυ(x) ≤ I(|x| < 1).

Note that Ê [|X1|p] ≤ CV(|X1|p) <∞ by limc→∞ Ê
[
(|X1|p − c)+

]
= 0.
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If p ≥ 1, by Lemma 2.2, Ê[Xi] = 0, (4.4) and αp > 1, we have that

n−α

∣∣∣∣∣
n∑
i=1

Ê[Yni]

∣∣∣∣∣ ≤ n−α
n∑
i=1

(∣∣∣Ê[Xi]
∣∣∣+ Ê

[∣∣∣Y ′ni∣∣∣])
= n−α

n∑
i=1

Ê
[(
|Xi| −

εnα

4r

)
I

(
|Xi| >

εnα

4r

)]

≤ n−α
n∑
i=1

Ê
[(
|Xi| −

εnα

4r

)
g 1

2

(
4rXi

εnα

)]

≤ n−α
n∑
i=1

Ê
[
|Xi|g 1

2

(
4rXi

εnα

)]
= n1−αÊ

[
|X1|g 1

2

(
4rX1

εnα

)]
≤ Cn1−αpÊ [|X1|p]→ 0 as n→∞.(4.5)

If 0 < p < 1, by (4.4), Markov’s inequality and αp > 1, we have that

n−α

∣∣∣∣∣
n∑
i=1

Ê[Yni]

∣∣∣∣∣ ≤ n−α
n∑
i=1

Ê
[
|Xi|I

(
|Xi| ≤

εnα

4r

)
+
εnα

4r
I

(
|Xi| >

εnα

4r

)]

≤ n−α
n∑
i=1

Ê
[
|Xi|

(
1− g 1

2

(
2rXi

εnα

))
+
εnα

4r
g 1

2

(
4rXi

εnα

)]

≤ n−α
n∑
i=1

Ê
[
|Xi|

(
1−g 1

2

(
2rXi

εnα

))]
+C

n∑
i=1

Ê
[
g 1

2

(
4rXi

εnα

)]
= n1−αÊ

[
|X1|

(
1− g 1

2

(
2rX1

εnα

))]
+ CnÊ

[
g 1

2

(
4rX1

εnα

)]
≤ Cn1−αpÊ [|X1|p]→ 0 as n→∞.(4.6)

Hence for all n large enough, we have

n−α

∣∣∣∣∣
n∑
i=1

Ê[Yni]

∣∣∣∣∣ < ε

2
.

It follows that
∞∑
n=1

nαp−2V

(
n∑
i=1

Xi > εnα

)

≤
∞∑
n=1

nαp−2V
(

max
1≤i≤n

|Xi| >
εnα

4r

)
+

∞∑
n=1

nαp−2V

(
n∑
i=1

Yni > εnα

)

≤
∞∑
n=1

nαp−2
n∑
i=1

V
(
|Xi| >

εnα

4r

)
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+ C

∞∑
n=1

nαp−2V

(
n∑
i=1

(Yni − Ê[Yni]) >
εnα

2

)
.
= I + CJ.(4.7)

It is easily seen that

I ≤
∞∑
n=1

nαp−2
n∑
i=1

Ê
[
g 1

2

(
4rXi

εnα

)]

=

∞∑
n=1

nαp−1Ê
[
g 1

2

(
4rX1

εnα

)]

≤
∞∑
n=1

nαp−1V
(
|X1| ≥

εnα

8r

)
≤ C

∫ ∞
0

xαp−1V
(
|X1|p ≥

( ε
8r

)p
· xαp

)
dx

(
taking t =

( ε
8r

)p
· xαp

)
= C

∫ ∞
0

V(|X1|p ≥ t)dt

= C · CV(|X1|p) <∞.(4.8)

Next, we will show that J < ∞. It is easily seen that for fixed n ≥ 1,{
1
nα

(
Yni − Ê[Yni]

)
, 1 ≤ i ≤ n

}
are still EI random variables by Lemma 2.1.

Noting that Ê
[

1
nα

(
Yni − Ê[Yni]

)]
= 0 and max

1≤i≤n
1
nα

∣∣∣Yni − Ê[Yni]
∣∣∣ ≤ ε

2r for

fixed n ≥ 1, we have by (2.1) in Lemma 2.3 (taking x = ε
2 and y = ε

2r ) that

(4.9) J ≤ C
∞∑
n=1

nαp−2αr−2

(
n∑
i=1

Ê
[(
Yni − Ê[Yni]

)2])r
.

If p ≥ 2, then by taking r > αp−1
2α−1 and Hölder’s inequality, we have that

J ≤ C
∞∑
n=1

nαp−2αr−2

(
n∑
i=1

Ê
[
Y 2
ni

])r

≤ C
∞∑
n=1

nαp−2αr−2

(
n∑
i=1

Ê
[
X2
i

])r

≤ C
∞∑
n=1

nαp−2αr−2
(
n
(
Ê [|X1|p]

)2/p)r
≤ C

∞∑
n=1

nαp−2αr−2+r <∞.(4.10)
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If 0 < p < 2, then by taking r = 1 and the sub-additivity of Ê, we have that

J ≤ C
∞∑
n=1

nαp−2α−2
n∑
i=1

Ê
[
X2
i I

(
|Xi| ≤

εnα

4

)
+
ε2n2α

16
I

(
|Xi|>

εnα

4

)]

≤ C
∞∑
n=1

nαp−2α−2
n∑
i=1

Ê
[
X2
i

(
1− g 1

2

(
2Xi

εnα

))
+
ε2n2α

16
g 1

2

(
4Xi

εnα

)]

≤ C
∞∑
n=1

nαp−2α−2
n∑
i=1

Ê
[
X2
i

(
1− g 1

2

(
2Xi

εnα

))]

+ C

∞∑
n=1

nαp−2
n∑
i=1

Ê
[
g 1

2

(
4Xi

εnα

)]
.
= CJ1 + CJ2.(4.11)

In view of (4.8), we have J2 < ∞. In order to prove J1 < ∞, we construct
functions gk(·), k = 1, 2, . . .. Let gk(x) ∈ Cl,Lip(R) such that 0 ≤ gk(x) ≤ 1
and

gk

( x

ε · 2kα
)

=

{
0 if ε · 2(k−1)α < |x| ≤ ε · 2kα,
1 if |x| ≤ ε

2 · 2
(k−1)α or |x| > 3ε

2 · 2
kα.

It can be checked that

(4.12) 1− gk
(

X1

ε · 2kα

)
≤ I

(
ε

2
· 2(k−1)α < |X1| ≤

3ε

2
· 2kα

)
and

(4.13) X2
1

(
1− g 1

2

(
X1

ε · 2jα

))
≤ ε2 +

j∑
k=1

X2
1

(
1− gk

(
X1

ε · 2kα

))
.

Since p < 2, it follows by (4.4) and (4.13) that

J1 =

∞∑
n=1

nαp−2α−1Ê
[
X2

1

(
1− g 1

2

(
2X1

εnα

))]

=

∞∑
j=1

2j−1∑
n=2j−1

nαp−2α−1Ê
[
X2

1

(
1− g 1

2

(
2X1

εnα

))]

≤
∞∑
j=1

2j−1∑
n=2j−1

nαp−2α−1Ê
[
X2

1

(
1− g 1

2

(
X1

ε · 2jα

))]

≤ C
∞∑
j=1

2α(p−2)jÊ
[
X2

1

(
1− g 1

2

(
X1

ε · 2jα

))]

≤ C
∞∑
j=1

2α(p−2)jÊ

[
ε2 +

j∑
k=1

X2
1

(
1− gk

(
X1

ε · 2kα

))]
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≤ C
∞∑
j=1

2α(p−2)j + C

∞∑
j=1

2α(p−2)j
j∑

k=1

Ê
[
X2

1

(
1− gk

(
X1

ε · 2kα

))]
.
= CJ11 + CJ12.(4.14)

It is obvious that J11 <∞. According to (4.12) and the proof of (4.8), we can
obtain

J12 ≤ C
∞∑
k=1

2α(p−2)kÊ
[
X2

1

(
1− gk

(
X1

ε · 2kα

))]

≤ C
∞∑
k=1

2αpkV
(
|X1| >

ε

2
· 2(k−1)α

)

≤ C
∞∑
k=0

2k+1−1∑
n=2k

(
2k
)αp−1 V(|X1| >

ε

21+2α
· 2(k+1)α

)
≤ C

∞∑
n=1

nαp−1V
(
|X1| >

ε

21+2α
· nα

)
≤ C · CV(|X1|p) <∞.(4.15)

Hence, J <∞ from (4.11), J2 <∞, (4.14), J11 <∞ and (4.15) when 0 < p <
2.

This completes the proof of the theorem. �

Proof of Corollary 3.1. Taking α = 1 and p = 2 in Theorem 3.1(ii), we have
by (3.2) that

(4.16)

∞∑
n=1

V

(
1

n

n∑
i=1

Xi − Ê[X1] > ε

)
<∞

and
∞∑
n=1

V

(
1

n

n∑
i=1

Xi − ε̂[X1] < −ε

)
<∞.

By (4.16) and Lemma 2.4, we can obtain that for any ε > 0,

V

((
1

n

n∑
i=1

Xi − Ê[X1] > ε

)
, i.o.

)
= 0,

and thus,

(4.17) V

(
lim sup
n→∞

1

n

n∑
i=1

Xi − Ê[X1] > ε

)
= 0.

It follows by the countable sub-additivity of V and (4.17) that

V

(
lim sup
n→∞

1

n

n∑
i=1

Xi > Ê[X1]

)
= V

( ∞⋃
k=1

(
lim sup
n→∞

1

n

n∑
i=1

Xi > Ê[X1] +
1

k

))
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≤
∞∑
k=1

V

(
lim sup
n→∞

1

n

n∑
i=1

Xi > Ê[X1] +
1

k

)
= 0,

and thus,

V

(
lim inf
n→∞

1

n

n∑
i=1

Xi < ε̂[X1]

)
= V

(
lim sup
n→∞

1

n

n∑
i=1

(−Xi) > Ê[−X1]

)
= 0.

Therefore, the desired result (3.3) is obtained, and (3.4) follows from (3.3)
immediately. This completes the proof of the corollary. �

Proof of Theorem 3.2. Without loss of generality, we assume that Ê[Xi] = 0
when p ≥ 1. Similar to the proof of Theorem 3.1, it is sufficient to show that
for any p > 0,

(4.18)

∞∑
n=1

n−1V

(
n∑
i=1

Xi > εn1/p

)
<∞.

Here, we use the same notations as those in Theorem 3.1.
If p ≥ 1, since

(4.19)

∞∑
n=1

V(|X1|p > Cn) ≤ C · CV(|X1|p) <∞

and V(|X1|p > Cn) is decreasing with respect to n, we have nV(|X1|p > Cn)→
0 as n→∞. Thus,

Ê
[
|X1|pg 1

2

(
Xp

1

Cn

)]
≤ Ê

[
(|X1|p − n)g 1

2

(
Xp

1

Cn

)]
+ Ê

[
ng 1

2

(
Xp

1

Cn

)]
≤ Ê

[
(|X1|p − n)+

]
+ nV(|X1|p > Cn)→ 0 as n→∞.(4.20)

Hence, similar to the proof of (4.5), we have by (4.20) that

n−1/p

∣∣∣∣∣
n∑
i=1

Ê[Yni]

∣∣∣∣∣ ≤ Ê
[
|X1|pg 1

2

(
Xp

1

Cn

)]
→ 0 as n→∞.

If 0 < p < 1, similar to the proof of (4.6), we have that

n−1/p

∣∣∣∣∣
n∑
i=1

Ê[Yni]

∣∣∣∣∣ ≤ n1−1/pÊ [|X1|]→ 0 as n→∞.

Therefore, for all n large enough, we have

n−1/p

∣∣∣∣∣
n∑
i=1

Ê[Yni]

∣∣∣∣∣ < ε

2
.

In view of (4.7), (4.19) and the proofs of I < ∞ and J < ∞ in Theorem 3.1,
we can get the desired result (4.18) immediately. This completes the proof of
the theorem. �
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Proof of Theorem 3.3. In order to prove (3.7), it is equivalent to prove

∞∑
n=1

V

(
n∑
i=1

(Xni − Ê[Xni]) > anε

)
<∞(4.21)

and

(4.22)

∞∑
n=1

V

(
n∑
i=1

(Xni − ε̂[Xni]) < −anε

)
<∞.

It is obvious that (4.22) follows from (4.21) by replacing Xni by −Xni. So
we only need to prove (4.21). Without loss of generality, we assume that

Ê[Xni] = 0. Thus it is sufficient to show

(4.23)

∞∑
n=1

V

(
n∑
i=1

Xni > anε

)
<∞.

For fixed n ≥ 1, denote for 1 ≤ i ≤ n that

Yni = −anI(Xni < −an) +XniI(|Xni| ≤ an) + anI(Xni > an),

Y
′

ni = Xni − Yni = (Xni − an)I(Xni > an) + (Xni + an)I(Xni < −an).

Hence
∞∑
n=1

V

(
n∑
i=1

Xni > anε

)

≤
∞∑
n=1

V

(
n∑
i=1

Yni >
1

2
anε

)
+

∞∑
n=1

V

(
n∑
i=1

Y
′

ni >
1

2
anε

)

≤
∞∑
n=1

V

(
1

an

n∑
i=1

(
Yni − Ê[Yni]

)
>

1

2
ε− 1

an

n∑
i=1

∣∣∣Ê[Yni]
∣∣∣)

+

∞∑
n=1

V

(
n∑
i=1

Y
′

ni >
1

2
anε

)
.
= I1 + I2.(4.24)

Let fu be a function such that fu ∈ Cl,Lip(R), fu = 1 if |x| ≥ 1, fu = 0 if
|x| ≤ u, and 0 ≤ fu ≤ 1 for all x. Thus

(4.25) I(|x| ≥ 1) ≤ fu(x) ≤ I(|x| > u), I(|x| ≤ u) ≤ 1− fu(x) ≤ I(|x| < 1).

Noting that Ê[Xni] = 0 and q ≥ 1, we have by Lemma 2.2, (3.5) and (3.6) that

1

an

n∑
i=1

∣∣∣Ê[Yni]
∣∣∣ =

1

an

n∑
i=1

∣∣∣Ê[Xni − Y
′

ni]
∣∣∣

≤ 1

an

n∑
i=1

{∣∣∣Ê[Xni]
∣∣∣+ Ê[|Y

′

ni|]
}
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=
1

an

n∑
i=1

Ê[(|Xni| − an)I(|Xni| > an)]

≤ 1

an

n∑
i=1

Ê
[
(|Xni| − an)fu

(
Xni

an

)]

≤ 1

an

n∑
i=1

Ê
[
|Xni|fu

(
Xni

an

)]

≤ C
n∑
i=1

Ê
[

Ψi(Xni)

Ψi(uan)

]
→ 0 as n→∞,

which, together with (2.2) in Lemma 2.3, (3.5) and (3.6), yields that

I1 ≤ C
∞∑
n=1

V

(
1

an

n∑
i=1

(
Yni − Ê[Yni]

)
>

1

4
ε

)

≤ C
∞∑
n=1

1

a2n

n∑
i=1

Ê
[(
Yni − Ê[Yni]

)2]

≤ C
∞∑
n=1

1

a2n

n∑
i=1

Ê[Y 2
ni]

≤ C
∞∑
n=1

1

a2n

n∑
i=1

Ê[X2
niI(|Xni| ≤ an) + a2nI(|Xni| > an)]

≤ C
∞∑
n=1

1

a2n

n∑
i=1

Ê
[
X2
ni

(
1−fu

(
uXni

an

))]
+C

∞∑
n=1

n∑
i=1

Ê
[
fu

(
Xni

an

)]

≤ C
∞∑
n=1

n∑
i=1

Ê
[

Ψi(uXni)

Ψi (an)

]
+ C

∞∑
n=1

n∑
i=1

Ê
[

Ψi(Xni)

Ψi(uan)

]
<∞.(4.26)

According to the definition of Y
′

ni, we have by (3.5) and (3.6) again that

I2 ≤
∞∑
n=1

V

(
n⋃
i=1

(|Xni| > an)

)

≤
∞∑
n=1

n∑
i=1

V(|Xni| > an)

≤
∞∑
n=1

n∑
i=1

Ê
[

Ψi(Xni)

Ψi(uan)

]
<∞.(4.27)

Hence, (4.23) follows from (4.24), (4.26) and (4.27) immediately. The proof is
completed. �

Proof of Corollary 3.2. The proof is similar to that of Corollary 3.1, so we omit
the details. �
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Proof of Theorem 3.4. Similar to the proof of Theorem 3.3, we only need to
prove (4.26). It follows by Markov’s inequality, Lemma 2.5 (taking s ≥ p),

Jensen’s inequality, the sub-additivity of Ê, (3.5), (3.6) and (3.10) that

I1 ≤ C
∞∑
n=1

V

 1

an

(
n∑
i=1

(
Yni − Ê[Yni]

))+

>
1

4
ε


≤ C

∞∑
n=1

1

asn
Ê

( n∑
i=1

(Yni − Ê[Yni])

)+
s

≤ C
∞∑
n=1

1

asn

 n∑
i=1

Ê
[∣∣∣Yni − Ê[Yni]

∣∣∣s]+

(
n∑
i=1

Ê
[(
Yni − Ê[Yni]

)2])s/2
≤ C

∞∑
n=1

1

asn

n∑
i=1

Ê[|Yni|s] + C

∞∑
n=1

1

asn

(
n∑
i=1

Ê
[
Y 2
ni

])s/2

≤ C
∞∑
n=1

1

asn

n∑
i=1

Ê[|Xni|sI(|Xni| ≤ an) + asnI(|Xni| > an)]

+ C

∞∑
n=1

(
n∑
i=1

Ê

[(
Xni

an

)2
])s/2

≤ C
∞∑
n=1

1

asn

n∑
i=1

Ê
[
|Xni|s

(
1− fu

(
uXni

an

))]

+ C

∞∑
n=1

n∑
i=1

Ê
[
fu

(
Xni

an

)]
+ C

≤ C
∞∑
n=1

n∑
i=1

Ê
[

Ψi(uXni)

Ψi (an)

]
+ C

∞∑
n=1

n∑
i=1

Ê
[

Ψi(Xni)

Ψi(uan)

]
+ C <∞.

This completes the proof of the theorem. �

Proof of Corollary 3.3. The proof is similar to that of Corollary 3.1, so we omit
the details. �
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