GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

HUCHCHAPPA ARUNA KUMARA AND VENKATESHA VENKATESHA

Abstract. Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, μ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere S^{2n+1}. Next, it is proved that, if a non-Sasakian (κ, μ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space E^{n+1} and a sphere $S^n(4)$ of constant curvature $+4$.

1. Introduction

Let (M, g) be a smooth Riemannian manifold of dimension ≥ 3. We say that (M, g) is an Einstein-type manifold or that (M, g) supports an Einstein-type structure if there exist a vector field V on M and a smooth function $\lambda : M \to \mathbb{R}$ such that

$$\alpha S + \beta \nabla^2 f + \nu df \otimes df = \gamma g = (\rho r + \lambda)g,$$

for some constants $\alpha, \beta, \nu, \rho \in \mathbb{R}$ with $(\alpha, \beta, \nu) \neq 0$. Here ∇ and $V^\#(X) = g(V, X)$ stand for the Lie derivative and the 1-form metrically dual to the vector field V, respectively. If $V = \nabla f$ for some smooth function $f : M \to \mathbb{R}$, we say that (M, g) is a gradient Einstein-type manifold. In this case, the equation (1) can be written as

$$\alpha S + \beta \nabla^2 f + \nu df \otimes df = \gamma g,$$

where S is Ricci tensor and ∇^2 stands for the Hessian of f. We refer to f as the potential function.

The concept of Einstein-type manifold was studied and introduced by Catino et al. as a generalization of Einstein spaces [8]. In case f is constant we say that the Einstein-type structure is trivial. Notice that, an Einstein-type structure

Received July 18, 2019; Revised October 12, 2019; Accepted January 7, 2020.
2010 Mathematics Subject Classification. 53C25, 53C20, 53D15.
Key words and phrases. Einstein-type manifolds, K-contact manifolds, Sasakian manifold, (κ, μ)-contact manifold, Einstein manifold.

©2020 Korean Mathematical Society

639
on a Riemannian manifold \((M, g)\) unifies several particular cases well studied in the literature, such as Ricci solitons \([15, 22]\), Ricci almost solitons \([23]\), gradient Ricci solitons, Yamabe solitons \([6, 10]\), Yamabe quasi-solitons \([16]\), conformal gradient solitons \([25]\), \(m\)-quasi-Einstein manifolds \([7]\), \((m, \rho)\)-quasi-Einstein manifold \([17]\) and \(\rho\)-Einstein solitons \([9]\).

There has been a growing interest in the study of Einstein condition and its various generalizations in the setting of contact metric manifolds in recent years. In \([4]\), Boyer-Galicki studied Einstein and \(\eta\)-Einstein \(K\)-contact manifolds and they proved that any compact \(K\)-contact Einstein manifold is Sasakian. In \([24]\), the author generalizing Boyer-Galicki result proved that if a complete \(K\)-contact metric represents a gradient Ricci soliton, then it is compact Einstein and Sasakian. Extending these for gradient Ricci almost solitons, the author \([11]\) proved that if a compact \(K\)-contact metric represents a gradient Ricci almost soliton, then it is isometric to a unit sphere \(S^{2n+1}\).

Recently, Ghosh studied \(m\)-quasi-Einstein, generalized \(m\)-quasi-Einstein and \((m, \rho)\)-quasi-Einstein metric within the background of contact geometry respectively in \([13]\), \([14]\) and \([12]\). These works of Ghosh inspires us to study the gradient Einstein-type condition within the background of \(K\)-contact manifolds and \((\kappa, \mu)\)-contact manifolds.

In this paper, we confine our study to the gradient Einstein-type metric within the framework of \(K\)-contact and \((\kappa, \mu)\)-contact manifolds. In Section 2, we gathered some preliminary definitions and formulas on contact manifolds. In Section 3, we prove that if complete \(K\)-contact manifolds admit a gradient Einstein-type metric, then \(M\) is compact, Einstein, Sasakian and isometric to the unit sphere \(S^{2n+1}\). In Section 4, we consider \((\kappa, \mu)\)-contact manifold which admits a gradient Einstein-type metric and we prove that if a non-Sasakian \((\kappa, \mu)\)-contact manifold supports a gradient Einstein-type structure, then for \(n = 1\), \(M\) is flat, and for \(n > 1\), \(M\) is locally isometric to \(E^{n+1} \times S^n\) \((4)\).

We have borrowed some ideas and arguments from \([21]\), but our goals and main results are different from \([21]\).

2. Preliminaries

Let us recall the basic concepts and formulas of contact metric manifolds. A \((2n + 1)\)-dimensional smooth manifold \(M\) is said to be contact if it admits a global 1-form \(\eta\) such that \(\eta \wedge (d\eta)^n \neq 0\) on \(M\). This 1-form is called a contact 1-form. For a contact 1-form \(\eta\), there exists a unique vector field \(\xi\) such that \(d\eta(\xi, X) = 0\) for all vector field \(X\) and \(\eta(\xi) = 1\). Polarizing \(d\eta\) on the contact sub-bundle \(\mathcal{D}\) (defined by \(\eta = 0\)), we obtain a Riemannian metric \(g\) and a \((1, 1)\)-tensor field \(\varphi\) such that

\[
\begin{align*}
(3) & \quad d\eta(X, Y) = g(X, \varphi Y), \quad \eta(X) = g(X, \xi), \quad \varphi^2 X = -X + \eta(X)\xi \\
(4) & \quad \varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y).
\end{align*}
\]
The structure \((\varphi, \xi, \eta, g)\) on \(M\) is known as a contact metric structure and the metric \(g\) is called an associated metric. A Riemannian manifold \(M\) together with the structure \((\varphi, \xi, \eta, g)\) is said to be a contact metric manifold and we denote it by \((M, \varphi, \xi, \eta, g)\). On a contact metric manifold (see [1])

\[
\nabla_X \xi = -\varphi X - \varphi hX, \quad h\varphi + \varphi h = 0,
\]

\[
(\nabla_X \varphi) + (\nabla_{\varphi X} \varphi)Y = 2g(Y, X)\xi - \eta(Y)(X + hX + \eta(Z)\xi),
\]

for any vector field \(X,Y\) on \(M\) and \(\nabla\) denotes the operator of covariant differentiation of \(g\). If the vector field \(\xi\) is Killing (equivalently, \(h = 0\)) with respect to \(g\), then the contact metric manifold \(M\) is said to be \(K\)-contact. On a \(K\)-contact (Sasakian) manifold the following formulas are known [1]

\[
\nabla_X \xi = -\varphi X, \quad Q\xi = 2n\xi, \quad (\nabla_X \varphi)Y = R(\xi, X)Y,
\]

where \(Q\) and \(R\) denote the Ricci operator and the Riemann curvature tensor of \(g\), respectively. A contact metric manifold is said to be Sasakian if it satisfies

\[
(\nabla_X \varphi)Y = g(X, Y)\xi - \eta(Y)X.
\]

On a Sasakian manifold the curvature tensor satisfies

\[
R(X, Y)\xi = \eta(Y)X - \eta(X)Y.
\]

Also, the contact metric structure on \(M\) is said to be Sasakian if the almost Kähler structure on the metric cone \((M \times R^+, r^2g + dr^2)\) over \(M\), is Kähler [1]. Any Sasakian manifold is \(K\)-contact, and the converse only holds when the dimension is 3. See [1] and [5] for more information about it.

3. \(K\)-contact manifold satisfying the gradient Einstein-type metrics

Here, consider a \(K\)-contact metric as a gradient Einstein-type metric. The following will be needed to prove our main result.

Lemma 3.1. If \((M, g, \alpha, \beta, \nu, \gamma)\) is a gradient Einstein-type contact metric manifold, then the curvature tensor \(R\) has the expression

\[
\beta R(X, Y)Df = \alpha[(\nabla_Y Q)X - (\nabla_X Q)Y] + \frac{\nu\gamma}{\beta}[(Xf)Y - (Yf)X]
\]

\[
+ \frac{\nu\alpha}{\beta}[(Yf)QX - (Xf)QY] + [(X\gamma)Y - (Y\gamma)X]
\]

for any vector fields \(X, Y\) on \(M\).

Proof. The gradient Einstein-type equation (2) can be expressed as

\[
\alpha QY + \beta \nabla_Y Df + \nu g(Y, Df)Df = \gamma Y,
\]
where D is the gradient operator of g. Differentiate (13) covariantly along X, we obtain
\[
\alpha(\nabla_X Q)Y + \alpha Q\nabla_X Y + \beta \nabla_X \nabla_Y Df + \nu g(\nabla_X Y, Df)Df
+ \nu g(Y, Df)\nabla_X Df = (X\gamma)Y + \gamma \nabla_X Y.
\]

Then the required result follows by applying this equation and (13) to the well known expression $R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$. □

Theorem 3.2. Let $(M, \varphi, \xi, \eta, g)$ be a complete K-contact manifold of dimension $2n+1$. If there exists a gradient Einstein-type structure $(f, \alpha, \beta, \nu, \gamma)$ associated with the contact metric g, then M is compact, Einstein, Sasakian and isometric to the unit sphere S^{2n+1}.

Proof. Applying the covariant derivative to (8) and then employing (7), we obtain
\[
(\nabla_X Q)\xi = Q\varphi X - 2n\varphi X.
\]

At this point we remember that for a K-contact manifold ξ is Killing, and hence $L_\xi Q = 0$. In view of (7) and (8), we obtain $\nabla_\xi Q = Q\varphi - \varphi Q$. Replacing ξ with X in (12) and making use of $\nabla_\xi Q = Q\varphi - \varphi Q$, (15) and (9), we get
\[
-\beta g((\nabla_Y \varphi)X, Df) = \alpha g((\varphi Q - 2n\varphi Y, X) + \left[(\gamma + \frac{\nu\gamma}{\beta})(\xi f) \right] g(Y, X)
+ \left[\frac{\nu(2n\alpha - \gamma)}{\beta} \right] (Y f) \eta(X) - (\xi f) \frac{\nu\alpha}{\beta} g(QY, X)
- (Y\gamma)\eta(X).
\]

Replacing X and Y by φX and φY respectively in relation (16), adding the resulting equation with (16) and then using (6) (where $h = 0$, as M is K-contact) and (7), we have
\[
-2\beta(\xi f)g(Y, X) + \beta(Y f)\eta(X) + \beta(\xi f)\eta(Y)\eta(X)
= \alpha((\varphi Q + Q\varphi)Y, X) + 2 \left[(\gamma + \frac{\nu\gamma}{\beta})(\xi f) \right] g(Y, X)
+ (\xi f) \frac{\nu\alpha}{\beta} g((\varphi Q - QY, X) - \left[(\gamma + \frac{\nu\gamma}{\beta})(\xi f) \right] \eta(Y)\eta(X)
+ \left[(\gamma - \frac{\nu\alpha}{\beta}) (Y f) \eta(X) - 4n\alpha g(\varphi Y, X) - (Y\gamma)\eta(X).
\]

Since Q is self-adjoint, anti-symmetrizing the above equation gives
\[
\beta[(Y f)\eta(X) - (X f)\eta(Y)] = 2\alpha((\varphi Q + Q\varphi)Y, X) - 8n\alpha g(\varphi Y, X)
+ \frac{\nu(2n\alpha - \gamma)}{\beta}[(Y f)\eta(X) - (X f)\eta(Y)]
+ [(X\gamma)\eta(Y) - (Y\gamma)\eta(X)].
\]
Now replacing X by φX and Y by φY in the equation (18) and applying the K-contact condition (8), (3), $\eta \circ \varphi = 0$ and $\varphi \xi = 0$ gives

$$g((\varphi Q + Q\varphi)Y, X) = 4ng(\varphi Y, X)$$

for all vector fields Y, Z on M. It follows from last equation that

$$\varphi Q + Q\varphi = 4n\varphi Y.$$

In view of above equation, it follows from (18) that

$$\nu(2n\alpha - \gamma) - \frac{\beta^2}{\beta} [(Yf)\eta(X) - (Xf)\eta(Y)] = [(Y\gamma)\eta(X) - (X\gamma)\eta(Y)].$$

Next, taking $\sigma = \nu(2n\alpha - \gamma) - \beta^2$. So $D\sigma = -\nu D\gamma$. On account of these, (20) can be exhibited as

$$\sigma Df + \frac{\beta}{\nu} D\sigma = \left\{ \sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) \right\} \xi.$$

Differentiating (21) in the direction of X and utilizing of (7) provides

$$(X\sigma)Df + \sigma \nabla_X Df + \frac{\beta}{\nu} \nabla_X D\sigma = X \left\{ \sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) \right\} \xi$$

$$- \left\{ \sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) \right\} \varphi X.$$

Taking inner product of (22) with Y and then anti-symmetrizing the resulting equation, we obtain

$$(X\sigma)(Yf) - (Y\sigma)(Xf) = X \left\{ \sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) \right\} \eta(Y)$$

$$- Y \left\{ \sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) \right\} \eta(X)$$

$$- 2 \left\{ \sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) \right\} g(\varphi X, Y).$$

Now we can write the equation (21) as

$$\sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) = 0.$$

Substituting (24) in (23), inserting X by φX, Y by φY in the resulting equation and noting that $g(\varphi X, Y) \neq 0$ for any contact metric manifold, we obtain

$$\sigma(\xi f) + \frac{\beta}{\nu}(\xi \sigma) = 0.$$

Making use of (25) in (21), we get

$$\nu(2n\alpha - \gamma) - \beta^2)(Xf) = -\frac{\beta}{\nu}(X\sigma).$$
On the other hand, taking the trace of (12) over X we obtain

\[
\begin{align*}
\left[\frac{\beta^2 + \nu \alpha}{\beta} \right] S(Y, Df) &= \frac{\alpha}{2} (Yr) + \frac{\nu (\alpha - 2n \gamma)}{\beta} (Yf) - 2n (Y \gamma).
\end{align*}
\]

Let \(\{ e_i, \varphi e_i, \xi_i \}, i = 1, 2, 3, \ldots, n \) be an orthonormal \(\varphi \)-basis of \(M \) such that \(Qe_i = \rho_i e_i \). Thus, we have \(\varphi Qe_i = \rho_i \varphi e_i \). Substituting \(e_i \) for \(Y \) in (19), we obtain \(Q \varphi e_i = (4n - \rho_i) \varphi e_i \). Using the \(\varphi \)-basis and (8), the scalar curvature \(r \) is given by

\[
\begin{align*}
r &= g(Q \xi, \xi) + \sum_{i=1}^{n} [g(Qe_i, e_i) + g(Q \varphi e_i, \varphi e_i)] \\
&= g(Q \xi, \xi) + \sum_{i=1}^{n} [\rho_i g(e_i, e_i) + (4n - \rho_i) g(\varphi e_i, \varphi e_i)] \\
&= 2n (2n + 1).
\end{align*}
\]

Making use of the constancy of \(r \), \(D\sigma = -\nu D\gamma \) and (26) in (27), it follows that \(QDf = 2nDf \). Differentiating this along \(X \) and recalling (13) and \(QDf = 2nDf \), we obtain

\[
(\nabla_X Q)Df - \frac{\alpha}{\beta} Q^2 X + \frac{\gamma + 2n \alpha}{\beta} QX - \frac{2n \gamma}{\beta} X = 0.
\]

Contracting the foregoing equation over \(X \) and observing that \(r = 2n(2n + 1) \), we get

\[
\begin{align*}
\sum_{i=1}^{2n+1} g((\nabla_X Q)Df, e_i) - \frac{\alpha}{\beta} |Q|^2 + r \frac{\gamma + 2n \alpha}{\beta} - \frac{\gamma r}{\beta} &= 0.
\end{align*}
\]

Using that the scalar curvature is constant, the first term vanishes because \(\text{div} Q = \frac{1}{2} dr \) (this follows from the contraction of Bianchi’s second identity). From (28), we deduce \(|Q|^2 = 2nr \). Then, since \(r = 2n(2n + 1) \), we get

\[
\begin{align*}
|Q - \frac{r}{2n + 1} I|^2 &= |Q|^2 + \frac{r^2}{2n + 1} - \frac{2r^2}{2n + 1} \\
&= 2nr - \frac{r^2}{2n + 1} \\
&= 4n^2 (2n + 1) - 4n^2 (2n + 1) = 0.
\end{align*}
\]

Since the symmetric tensor \(Q - \frac{r}{2n + 1} I \) is of length zero, we get

\[
Q = \frac{r}{2n + 1} I = 2n I.
\]

This shows that \(M \) is Einstein with Einstein constant \(2n \). Since \(M \) is complete, compactness of \(M \) follows from Myers’ theorem [19]. Applying the result of
Boyer-Galicki [4], we can conclude that M is Sasakian. Consequently, (13) reduces to

$$\nabla_Y Df = \frac{(\gamma - 2n\alpha)}{\beta} Y - \frac{\nu}{\beta^2} g(Y, Df) Df.$$ \hspace{1cm} (29)

Now consider a smooth function $u = e^{\frac{\nu}{\beta} f}$ on M. From this we have the following relation (see Gomes [18]);

$$Du = \frac{\nu}{\beta} u Df,$$ \hspace{1cm} (30)

$$\nabla_Y Df + \frac{\nu}{\beta} g(Y, Df) Df = \frac{\beta}{\nu u} \nabla_Y Du.$$ \hspace{1cm} (31)

Comparing (29) and (31), we get

$$\nabla_Y Du = \frac{(\gamma - 2n\alpha)\nu u}{\beta^2} Y.$$ \hspace{1cm} (32)

As M is Einstein with constant scalar curvature $r = 2n(2n + 1)$, the equation (27) takes the form $(\gamma\nu - 2nu\alpha + \beta^2) Df = -\beta D\gamma$. Using (30) in the foregoing equation we immediately infer that

$$(\gamma\nu - 2nu\alpha + \beta^2) Du = -\nu D\gamma.$$

From this we can write $\gamma\nu Du + \nu D\gamma = (2nu\alpha - \beta^2) Du$, which is equivalent to $D(\gamma\nu u) = (2nu\alpha - \beta^2) Du$. In other words, $\gamma\nu u = (2nu\alpha - \beta^2) u + k$, where k is a constant. This together with (32) gives

$$\nabla_Y Du = \left(-u + \frac{k}{\beta^2}\right) Y.$$ \hspace{1cm} (33)

As a result of Theorem 2 of Tashiro [25] it follows that M is isometric to unit sphere S^{2n+1}. This completes the proof. \hspace{1cm} \Box

Corollary 3.3. Let $(M, g, \alpha, \beta, \nu, \gamma)$ be a complete gradient Einstein-type manifold. If g represents a Sasakian metric, then it is compact, Einstein and isometric to the unit sphere S^{2n+1}. \hspace{1cm} \Box

Proof. This follows with the same proof as Corollary 3.1 in [21]. \hspace{1cm} \Box

Further, we remark that our Theorem 3.2 generalizes the results of Ghosh [11,12,14] on K-contact manifold admitting Ricci almost soliton, (m, ρ)-quasi-Einstein metric and generalized m-quasi-Einstein metric.

4. (κ, μ)-contact manifold satisfying gradient Einstein-type metrics

Blair et al. [2] introduced a (κ, μ)-contact manifold which is a contact metric manifold $(M, \varphi, \xi, \eta, g)$ whose curvature tensor satisfies

$$R(X, Y)\xi = \kappa\{\eta(Y)X - \eta(X)Y\} + \mu\{\eta(Y)hX - \eta(X)hY\}.$$ \hspace{1cm} (34)
for all vector fields \(X, Y \) on \(M \) and for some real numbers \((\kappa, \mu)\). Later on, Boeckx [3] classified these manifolds completely. This type of manifold is obtained by applying the \(D \)-homothetic deformation to a contact metric manifold that satisfies \(R(X, Y)\xi = 0 \). This class contains Sasakian manifolds (for \(\kappa = 1 \)) and the trivial sphere bundle \(E^{n+1} \times S^n(4) \) (for \(\kappa = \mu = 0 \)). Examples of non-Sasakian \((\kappa, \mu)\)-contact metric manifolds are the unit tangent bundles of Riemannian manifolds of constant curvature \(\neq 1 \). A lot of examples of \((\kappa, \mu)\)-contact structures can be constructed because of a \(D \)-homothetic deformation preserves \((\kappa, \mu)\)-contact structures (see [2]). On non-Sasakian \((\kappa, \mu)\)-contact manifolds, the following formulas are also true [2]:

\[
QX = [2(n-1) - n\mu]X + [2(n-1) + \mu]hX
\]

\[
Q\xi = 2n\kappa\xi,
\]

\[
h^2 = (\kappa - 1)\varphi^2, \quad \kappa < 1.
\]

For the non-Sasakian case, i.e., \(\kappa < 1 \), the equation (34) determines the curvature of \(M \) completely. As a result of this, it is proved that a non-Sasakian \((\kappa, \mu)\)-contact manifold is locally homogeneous and hence analytic [3]. Moreover, the scalar curvature \(r \) of such manifold is given

\[
r = 2n(2(n-1) + \kappa - n\mu),
\]

which is constant. On a \((\kappa, \mu)\)-contact manifold we have

\[
(\nabla_\xi Q)X = \mu(2(n-1) + \mu)h\varphi X
\]

for any vector field \(X \) on \(M \).

Here we intend to examine the existence of gradient Einstein-type metric on \((\kappa, \mu)\)-contact manifold, and prove the following fruitful outcome.

Theorem 4.1. Let \((M, \varphi, \xi, \eta, g)\) be a non-Sasakian \((\kappa, \mu)\)-contact manifold. If there exists a gradient Einstein-type structure \((f, \alpha, \beta, \nu, \gamma)\) associated with the metric \(g \), then for \(n = 1 \), \(M \) is flat, and for \(n > 1 \), \(M \) is locally isometric to \(E^{n+1} \times S^n(4) \).

Proof. First, differentiate (36) covariantly along an arbitrary vector field \(X \) and utilization of (5), we obtain

\[
(\nabla_X Q)\xi = Q(\varphi + \varphi h)X - 2nk(\varphi + \varphi h)X.
\]

Thus, taking the scalar product of (12) with \(\xi \) and using (36), the equation (40) gives

\[
g(R(X, Y)Df, \xi) = \frac{\alpha}{\beta}(g(Q\varphi Y + \varphi QY, X) + g(Q\varphi hY + h\varphi QY, X)

- 4nk g(\varphi Y, X)) + \frac{\nu(2n\kappa - \gamma)}{\beta^2} \{(Yf)\eta(X) - (Xf)\eta(Y)\}
\]
\((\nabla_{\xi} Df) = \mu h\varphi.\)

From \((13),\) we have

\[
\nabla_{\xi} Df = \frac{\gamma - 2n\kappa\alpha}{\beta} \xi - \frac{\nu}{\beta} (\xi f) Df.
\]
Differentiating (46) along ξ and taking into account (39), (46)-(48) we ultimately obtain

$$\mu^2 \varphi Df = \frac{\nu b}{\beta} (\xi f) \xi + \left[\frac{a(\gamma - 2n\kappa\alpha) + b(\gamma - 2n\kappa\alpha - \nu(\xi f)^2)}{\beta} \right] \xi$$

where we used $g(\nabla_\xi Df, \xi) = (\xi f) \xi$. Here,

$$a = \frac{4n^2\kappa\nu\alpha^2 - 2nk\beta^2 - \nu r\alpha^2}{2n} \quad \text{and} \quad b = \frac{r\nu\alpha^2 - 2nk\nu\alpha - 4n^2\kappa\nu\alpha}{2n}.$$

Applying φ to the above equation, we obtain

$$\left\{ \mu^2 - \mu \left(\frac{\beta^2 + \nu\alpha}{2n} \right) [2(n - 1) + \mu] \right\} hDf = 0.$$

Furthermore, operating the preceding equation by h and using (37), it follows that

$$\mu \left[\mu(2n - (\beta^2 + \nu\alpha)) - 2(\beta^2 + \nu\alpha)(n - 1) \right] (\kappa - 1) \varphi^2 Df = 0.$$

Since M is non-Sasakian, we have either (i) $\mu = 0$ or (ii) $\varphi^2 Df = 0$ or (iii) $\mu = \frac{2(\beta^2 + \nu\alpha)(n - 1)}{2n - (\beta^2 + \nu\alpha)}$.

Case (i). Here, it follows from (43) that $\kappa = 0$ because of $\mu = 0$. Hence $R(X, Y)\xi = 0$, according to the result of Blair [1] we obtain that M is flat in dimension 3 and in higher dimensions it is locally isometric to the trivial bundle $\mathbb{E}^{(n+1)} \times \mathbb{S}^n(4)$.

Case (ii). Making use of (3) in $\varphi^2 Df = 0$ yields $Df = (\xi f)\xi$. Differentiating this along X, employing (3) gives that $\nabla_X Df = X(\xi f)\xi - (\xi f)(\varphi X + \varphi h X)$. As a result of Poincare lemma $g(\nabla_X Df, Y) = g(\nabla_Y Df, X)$, the last equation provides

$$X(\xi f)\eta(Y) - Y(\xi f)\eta(X) + 2(\xi f)g(X, \varphi Y) = 0.$$

Replacing X and Y with φX and φY, respectively, in the above equation furnishes $\xi f = 0$, where we applied $g(X, \varphi Y) \neq 0$ for any contact metric structure. By virtue of this, we have $Df = 0$, i.e., f is constant and consequently (13) shows that M is Einstein, i.e., $QX = \frac{2}{n}X = 2n\kappa X$ by (48). Contracting this over X we find that the scalar curvature $r = 2n\kappa(2n + 1)$. It shows $\eta\mu = 2(n - 1) - 2n\kappa$ in combination with (38). On the other hand, we can easily find $[2(n - 1) + \mu]h = 0$ from (35) on the basis of last equation and $QX = 2n\kappa X$. Since M is non-Sasakian, we must have $2(n - 1) + \mu = 0$. So it follows for dimension 3 that $\mu = 0 = \kappa$, and by applying Blair’s result [1] we obtain that M is flat. Again, for higher dimension it follows from $\mu = 2(1 - n)$ and (43) that $\kappa = n - \frac{1}{n} > 1$, contradicting our assumption.
Case (iii). Since $\mu = \frac{2(\beta^2 + \nu\alpha)(n-1)}{2n-(\beta^2 + \nu\alpha)}$, it follows from (43) that

$$\kappa = \frac{(\beta^2 + \nu\alpha)(n^2 - 1)}{n(\beta^2 + \nu\alpha) - 2n}.$$

For $n = 1$, it follows that $\mu = \kappa = 0$ and hence flat. For $n > 1$, making use of (35) in (46) provides

$$\left[4n^2\kappa\nu\alpha - 2n\kappa\beta^2 - \nu\alpha + (\beta^2 + \nu\alpha)(2(n-1) - n\mu)\right]\{Df - (\xi f)\xi\} + [2(\beta^2 + \nu\alpha)(n-1) + \mu((\beta^2 + \nu\alpha) - 2n)]hDf = 0.$$

By virtue of $\mu = \frac{2(\beta^2 + \nu\alpha)(n-1)}{2n-(\beta^2 + \nu\alpha)}$, the above equation entails that

$$\left[4n^2\kappa\nu\alpha - 2n\kappa\beta^2 - \nu\alpha + (\beta^2 + \nu\alpha)(2(n-1) - n\mu)\right]\{Df - (\xi f)\xi\} = 0.$$

If $Df - (\xi f)\xi = 0$, then proceeding as in Case (ii) it follows that, for $n > 1$, a contraction. Therefore, we only have $4n^2\kappa\nu\alpha - 2n\kappa\beta^2 - \nu\alpha + (\beta^2 + \nu\alpha)(2(n-1) - n\mu) = 0$. This together with (38) entails that

$$((2n-1)\nu\alpha - \beta^2)[2(1-n) + n(2\kappa + \mu)] = 0,$$

which implies that either $\beta^2 = (2n-1)\nu\alpha$, or $2(1-n) + n(2\kappa + \mu) = 0$. The former case shows that $\kappa > 1$, a contradiction. For later case, utilization of $\mu = \frac{2(\beta^2 + \nu\alpha)(n-1)}{2n-(\beta^2 + \nu\alpha)}$ and $\kappa = \frac{(\beta^2 + \nu\alpha)(n^2 - 1)}{n(\beta^2 + \nu\alpha) - 2n}$, the last equation transforms into

$$\beta^2 + \nu\alpha = \frac{2n - 2n^2}{n^3 - 2n^2 + 1}.$$

Making use of this in $\kappa = \frac{(\beta^2 + \nu\alpha)(n^2 - 1)}{n(\beta^2 + \nu\alpha) - 2n}$, we obtain $\kappa = 1$, and this leads to a contradiction as M is non-Sasakian. This establishes the proof. \hfill \square

It is known [18] that a compact Riemannian manifold admitting a nontrivial gradient Einstein-type metric with constant scalar curvature is isometric to the standard sphere. But a contact metric manifold of constant curvature is a Sasakian manifold of constant curvature in dimension > 3 [20]. On the other hand, in dimension 3, it is either flat or Sasakian manifold of constant curvature 1 (see Blair [1]). From (38) we see that the scalar curvature of a (κ, μ)-space is constant. Thus, for a compact (κ, μ)-contact manifold we have the following:

Corollary 4.2. If a compact (κ, μ)-contact manifold admits a gradient Einstein-type metric, then in dimension 3 it is either flat or Sasakian and for higher dimensions it is isometric to a unit sphere S^{2n+1}.

Acknowledgement. The authors would like to express their deep thanks to the referee for his/her careful reading and many valuable suggestions towards the improvement of the paper.
References

Huchchappa Aruna Kumara
Department of Mathematics
Kuvempu University
Shankaraghatta
Karnataka 577 451, India
Email address: arunmathku@gmail.com

Venkatesha Venkatesha
Department of Mathematics
Kuvempu University
Shankaraghatta
Karnataka 577 451, India
Email address: vensmath@gmail.com