Antioxidant Activity, Macamide B Content and Muscle Cell Protection of Maca (Lepidium meyenii) Extracted Using Ultrasonification-Assisted Extraction

Enkhbolor Buyanbadrakh1, Hyeong-Suk Hong1, Kang-Woo Lee2, Wen Yan Huang3, and Jun-Hyun Oh1*

1Department of Plant and Food Sciences, Sangmyung University, Cheonan 31066, Republic of Korea
2SSbiopharm Ltd., Cheonan 31056, Republic of Korea
3Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea

Received: November 19, 2019 / Revised: December 2, 2019 / Accepted: December 5, 2019

Introduction

Maca (Lepidium meyenii), an annual or biennial plant of the family of Brassicaceae, is mainly grown in Andean region of Peru where the altitude is between 3,500 and 4,500 m above sea level [1]. Maca is rich in nutrients and secondary metabolites with a variety of biological activities. Its main chemical compositions are polysaccharides, flavones, microelements and amino acids [2]. Some studies reported that maca comprised of various classes of bioactive compounds such as saponins, alkaloids, steroid hormones, and polyphenol compounds [3]. Dried maca hypocotyls also contain several classes of secondary metabolites, including alkaloids, amino acids, glucosinolates, polysaccharides, fatty acids and macamides [4].

Macamides are secondary amides only found in maca and formed from benzylamine and a fatty acid moiety with varying hydrocarbon chain lengths [5]. Macamides are considered as biomarkers for maca, and the isolation...
and identification of macamides in maca have been studied extensively [5–7]. Xia et al. [8] identified 7 macamides using a HPLC, which were 9-oxo-10E,12Z-octadecadienoic acid, 9-oxo-10E,12E-octadecadienoic acid, N-benzyl-9-oxo-10E,12Z-octadecadienamide, N-benzyl-9-oxo-10E,12E-octadecadienamide, N-benzyl-9Z,12Z,15Z-octadecatrienamide, N-benzyl-9Z,12Z-octadecadienamide, and N-benzyl-hexadecanamide. Among these identified macamides, N-benzyl-hexadecanamide (macamide B) was one of the major macamides and frequently served as a biomarker for maca [7, 8].

Owing to its chemical components, maca is known to possess various health-improving and beneficial effects on fertility, energy, memory, osteoporosis, prostate, and skin [9]. It is commonly claimed by the nutrition industry that maca has the ability to improve energy efficiency and modulate the response against oxidative stress [10, 11]. Berlowski et al. [10] reported that maca played an important role as an antioxidant by radical scavenging or by maintaining intracellular ATP production in conditions of oxidative stress. The polysaccharides present in maca root also exhibited strong antioxidant activities by scavenging capacities on hydroxyl, DPPH, and superoxide anion radicals [11]. Recently, Wang and Zhu [12] summarized the health effects of maca; beneficial effects on male and female reproductive systems, antifatigue, antioxidation, neuroprotection, anticancer, hepatoprotection, antimicrobial and pesticidal activity, immune-regulation, prevention against ultraviolet radiation and so on. Rodríguez-Huamán et al. [13] reported that maca increased cell viability and decreased cell cytotoxicity in PC12 cells. Maca also exhibited inhibitory activity against the proliferation of the HT-29 cancer cell line with IC50 of 12.8 μmol/l [13]. Choi et al. [14] reported that lipid-soluble extract from maca powder improved swimming endurance capacity in mice. The anti-fatigue effect of maca was evaluated by the forced swimming test using different mice models, including male Kunming mice and ICR mice [11]. Dried yellow maca root powder, macamides, polypeptides and polysaccharides could be used for anti-fatigue purpose [15]. Further research showed that maca root powder at a dose of 400 mg/kg/d for 30 days prolonged swimming duration, increased liver glycogen content, and decreased blood lactic acid of male Kunming mice [16].

Ultrasound-assisted (UA) extraction has gained considerable attention due to its positive influence on heat and mass transfer, resulting in an efficient extraction of bioactive compounds in a shorter time and lower temperatures than traditional methods [17, 18]. UA extraction has been considered as a useful technique to recover, identify, and quantify alkaloid components from medicinal and food materials [17]. Chen et al. [9] optimized the UA extraction process to extract and identify macamides from maca at some conditions; solid/solvent ratio of 1:10, extraction temperature of 40°C, extraction time of 30 min, and extraction power of 200 W.

This study aims to evaluate the efficacy of UA extraction on the functionality of maca root as compared to the conventional extraction methods such as hot water and ethanol extraction. The specific objectives of this research are to 1) compare the antioxidant activities among the maca extracts, 2) determine macamide B contents present in maca extracts, and 3) evaluate the in vitro effects of maca extracts on the cell viability and creatine kinase activity.

Materials and Methods

Extraction of maca

The maca roots cultivated from Peru was used for this study. The dried maca roots were ground and stored in a freezer until use. The ground maca powder (12.5 g) was mixed with either 125 ml of distilled water or 75% (v/v) ethanol and maca extract was obtained using a soxhlet extractor at 100°C for 5 h (water extract), and at 60°C for 3 h (ethanol extract). For UA extraction, the maca powder (2.5 g) was placed in 25 ml of 75% (v/v) ethanol. The extraction was performed in an ultrasonic bath (Asia Ultrasonic, Co., Korea) operated at 60 kHz and 400 W for 1 h at room temperature. After UA extraction, the aqueous extract was filtered, concentrated in a vacuum rotary evaporator (Eyela, Rikakikai Co., China), and freeze-dried prior to further use.

Total phenolic content

The total phenolic content of the maca extracts was determined using the Folin-Ciocalteu method with minor modifications. A portion of 0.02 ml of the diluted extracts was mixed with 0.1 ml Folin-Ciocalteu reagent (Sigma Co., USA), followed by the addition of 0.3 ml
sodium carbonate (20% aqueous solution). The mixture was kept in the dark for 2 h, and the absorbance was measured at 765 nm using a spectrophotometer (VIS/UV mini 1240, Shimadzu, Japan). The total phenolic content of the extracts (mg) was expressed as gallic acid equivalents (GAE, µg/mg) [19].

Flavonoid content

An aliquot of 1 ml of maca extract (1 mg/ml) was added to 1 ml of 2% aluminum chloride methanolic solution, allowed to stand for 15 min, and the absorbance was measured at 430 nm. The standard curve was constructed using quercetin (6.25–100 µg/ml) (Sigma Co.). The total flavonoid content (mg/ml) in the samples was expressed as quercetin equivalent (QE, mg/ml) [20].

Determination of DPPH radical scavenging activity

The free radical scavenging activity was measured using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) as described by Brand-Williams [21]. Ascorbic acid (Sigma Co.) was used as positive control. After taking 100 µl of the diluted sample into a 96-well plate, 100 µl of DPPH reagent (Sigma Co.) was added into the wells. The mixture was placed at room temperature under dark condition for 30 min. Then, the absorbance of mixture solution was measured at 520 nm using a plate reader (Synergy H1, Bio Tec, USA). The radical scavenging activity was determined by following equation: DPPH radical scavenging activity (%) = (Absorbance of the control - Absorbance of the sample)/Absorbance of the control × 100 [22].

Ferric reducing antioxidant power (FRAP)

The FRAP assay was performed according to Lee and Chang [23]. The FRAP working solution contained 1 ml of 10 mmol neocuproine 2, 2-diphenyl-1-picrylhydrazyl (DPPH) solution (dissolved in 40 mmol hydrochloric acid), 1 ml of 20 mmol ferric chloride solution, and 10 ml of the acetate buffer solution (pH 3.6). A mixture of 60 µl of maca extracts and 180 µl of the FRAP solution was allowed to react for 5 min under the dark condition. The absorbance of the colored product of the ferrous tripyridyltriazine complex was determined at 593 nm using a plate reader (Synergy H1). The FRAP of the maca extract was calculated from the Trolox standard curve and expressed as Trolox equivalent (TE, mg/g) [24].

HPLC analysis for macamide B

One gram of ground maca powder was extracted with 40 ml of ethyl ether in an ultrasonicator (Asia Ultrasonic, Co.) operated at 400 W for 15 min at 50°C. After centrifugation at 5,000 rpm for 10 min, the supernatant was concentrated to dryness at 50°C by a rotary evaporator (Eyela, Rikakikai Co.). The residue was made up to exactly 10 ml with acetonitrile using a volumetric flask. The sample was finally filtered through a 0.22 µm filter prior to HPLC analysis.

The HPLC analysis for macamide B was performed on a Shimadzu LC-20AD XR consisting of an auto sampler and binary pump system (Shimadzu) coupled with a photodiode array (PDA) detector (SPD-M20A). An aliquot of 10 µl of sample solution was injected and analyzed using Agilent Porasil 5 C18-A 5 µm (250 mm x 4.6 mm) column (Agilent Technologies, USA) with an isocratic elution (acetonitrile:water:formic acid, 90:9.98:0.02) for 30 min. The flow rate was set at 0.6 ml/min, and the column temperature was 30°C. HPLC chromatograms of macamide B were recorded at 210 nm [6]. The macamide B standard (N-benzyl-hexadecanamide, Cat# CFN90843) was purchased from Sigma Co.

Cell culture and cytotoxicity test

The skeletal muscle cell line C2C12 myoblasts (CRL-1772, ATCC, USA) were maintained in high glucose Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS and 1% penicillin solution and were cultured at 37°C in 5% CO₂ condition. C2C12 myoblasts were seeded into 96-well plate (1 x 10⁴ cell/well) for 24 h and the medium was changed to 0.01–5 mg/ml concentration of various maca samples for an additional 24 h. After the sample treatment, 10 µl of MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) (M5655, Sigma Co.) solution (5 mg/ml) was added to each well for 3 h to evaluate the cytotoxicity of C2C12 myoblasts. The formazan precipitates were dissolved in 100 µl of DMSO (D0458, Samchun Chemicals, Korea) and the absorbance was measured at 595 nm [25].

Cytoprotective effects of maca extract

The C2C12 myoblasts were seeded into 96-well plate (1 x 10⁴ cell/well) and cultured for 24 h. Then, fresh hydrogen peroxide (H₂O₂) (H1009, Sigma Co.) solution
Buyanbadrakh et al.

(final concentration of 0.5 mmol) and the maca samples (final concentration of 1 mg/ml) were co-treated for another 24 h. Then, 10 µl of MTT solution (5 mg/ml) was added to each well for 3 h to evaluate the cytoprotective effects of maca samples. The formazan precipitates were dissolved in 100 µl of DMSO and the absorbance was measured at 595 nm [26].

Creatine kinase activity

The creatine kinase (CK) activity was examined by commercial kits (ab155901, ABCAM, UK). Briefly, C2C12 myoblasts were seeded (2.0 × 10^6 cell/well) into six-well plates and cultured for 24 h, then the H_2O_2 solution (final concentration, 0.5 mmol) and maca samples (final concentration, 1 mg/ml) were co-treated for another 24 h. The C2C12 myoblasts were washed twice by cold Phosphate-buffered saline (PBS) and homogenized in CK assay buffer, centrifuged to remove insoluble materials and the supernatant was diluted and combined with reaction mix to read the OD value at 450 nm in kinetics mode for 60 min.

Statistical analysis

Each experiment was repeated three times. One way analysis of variance (ANOVA) was performed using SPSS software (version 11.5, SPSS Ins., USA). Differences among means were analyzed using Duncan’s Multiple Range Test (DMRT), and the significance level was defined at p < 0.05.

Results and Discussion

Total phenolic content

The total phenolic content (TPC) of water, ethanol, and ultrasonification-assisted (UA) extracts of maca roots are presented in Fig. 1. The TPC was determined as 1.94, 2.53, and 2.90 GAE µg/mg for water, ethanol, and UA extracts of maca roots, respectively. This result is in a good agreement with the report that the total polyphenolic contents from maca extracts ranged from 0.09 to 3.29 mg/ml depending on the extraction solvents [27].

There are considerable reports that ultrasonification treatment significantly can increase the extraction yields and polyphenolic compounds from natural plants [17, 18, 28]. As compared to water stirrer extraction, the ultrasonification treatment for 3 h at 60℃ with 70% ethanol resulted in a 104.03% increase in TPC of Crataegus pinnatifida Bunge fruit [28]. In this research, the UA extract of maca roots also resulted in a significant increase in the TPC (p < 0.05).

In general, the extracts containing higher TPCs also exhibited higher flavonoid contents [28]. However in this study, the ethanol and UA extracts containing higher TPCs exhibited lower flavonoid content than the water extract. Flavonoids are part of polyphenols and include anthocyanindins, flavanols, flavones, flavonols, flavonones and isoflavonones. The discrepancy between the TPCs and flavonoid contents in maca roots may be attributed to the different individual phenolics and flavonoid compounds present in maca root. The ultrasonification treatment did not affect the flavonoid content in maca extract, thereby exhibiting no statistical difference in flavonoid contents between the ethanol extract and UA extract.

DPPH radical scavenging activity

DPPH radical scavenging activity is a common indicator to evaluate the antioxidant activity of natural extracts. The antioxidant activity of primary antioxidants can be assessed by evaluating the hydrogen donating ability to free radicals, resulting in conversion of harmful free radicals to non-toxic species during propagation steps of lipid oxidation [15]. The DPPH radical scavenging activities of water, ethanol, and UA extracts were 38.8%, 40.6% and 41.8%, respectively. Park et al.

Fig. 1. Total phenolic content and flavonoid content of maca extracts. GAE and QE indicate gallic acid equivalent and quercetin equivalent, respectively. UA indicates ultrasonification-assisted. Error bars represent standard deviation (n = 3). Different letters (a, b) represent significant differences among the samples at p < 0.05.

http://dx.doi.org/10.4014/mbl.1911.11009
[29] also reported that the DPPH radical scavenging activity of 70% ethanol extracts obtained from maca root was determined as approximately 43%. In their report, the free radical scavenging activities of maca root exhibited higher activity than maca leaves, and the activity was significantly dose dependent. Sandoval et al. [30] reported that the DPPH radical scavenging activity of maca roots were ranged from 21.64% to 71.38% depending on the concentration of maca extracts (0.03 to 0.3 mg/ml).

The DPPH radical scavenging activity in this study did not exhibit any statistical difference among the extracts. The statistical indifference of DPPH radical scavenging activity among the treatments in this study may be attributed to the TPCs among the treatments. There are some reports regarding the compounds responsible for antioxidant activity of maca extract [31, 32]. Gan et al. [31] reported that phenols and alkaloids were the most important substances for antioxidant activity of maca, of which the antioxidant effect of alkaloids seemed to be higher than that of phenols. In addition, Caicai et al. [32] studied two fractions of polysaccharides (MLP-1 and MLP-2) and demonstrated their antioxidant capability.

FRAP

The FRAP method is a method using the principle of reducing Fe$^{3+}$ to Fe$^{2+}$ by phenolic compounds as antioxidants. Therefore, FRAP provides a direct estimate of antioxidant activities or reductants present in the extracts, and also the ability of the analytes to reduce the Fe$^{3+}$/Fe$^{2+}$ pair. The ethanol and UA extracts of maca root exhibited significantly higher FRAP activities than the water extract ($p < 0.05$) (Fig. 3). This result exhibited almost similar trend with the total phenolic contents of maca extracts. Gan et al. [31] also reported that the TPCs exhibited significant linear correlations to FRAP in maca extracts. There was no statistical difference in FRAP between the ethanol and UA extracts.

Overall, the antioxidant activity of maca extracts determined in this study was comparable with other literatures. The degree of antioxidant activity of maca extracts was mainly dependent on the extraction solvents, and the ultrasonification treatment did not affect the antioxidant activity of maca roots significantly.

Macamide B content

Macamides are believed to be found only in maca and considered as the bioactive marker compounds in maca [8]. Among the identified macamides, N-benzyl-9Z,12Z,15Z-octadecatrienamide, N-benzyl-9Z,12Z-octadecadienamide, and N-benzyl-hexadecanamide (macamide B) were the major macamide compounds [6]. Therefore, macamide B was selected as a biomarker in this study. Fig. 4. presents the HPLC chromatograms of macamide B standard and macamide B present in water, ethanol, and UA extracts of maca root. The retention time of macamide B of standard was determined as 18.872 min.

The calculated macamide B contents of water, ethanol, and UA maca root extracts are presented in Table 1. Macamide B was not detected in water extract, presum-
able due to insolubility of macamide B in water. Macamide B has a long chain fatty acid and N-benzylamide, resulting in sparingly solubility in polar solvent such as water. The macamide B contents of ethanol and UA maca root extracts were determined as 0.087 and 0.083 µg/mg, respectively. This result is in a good agreement with the report that the macamide B contents in maca were determined from 0.095 to 0.194 mg/g [12]. There was no significant difference in macamide B contents between the ethanol and UA maca root extracts.

Cytotoxicity test

In the cytotoxicity test with the skeletal muscle cell, all of the maca extracts exhibited a dose-dependent pattern as the concentration increased from 0.01 to 5 mg/ml.
Antioxidant, Macamide B and Muscle Protection of Maca

June 2020 | Vol. 48 | No. 2

The maca extracts maintained greater than 80% cell viability up to the concentration of 1 mg/ml. However, cell viability at the concentration of 5 mg/ml was significantly decreased, indicating that the maca extract at concentrations up to 1 mg/ml would not affect the cell viability. There was no significant difference in cell viability among the water, ethanol, and UA maca root extracts. Therefore, the concentration of 1 mg/ml was determined to be used for further test toward the muscle cell.

Cytoprotective effects of maca extract

Oxidative stress is caused by increment of cellular reactive oxygen species (ROS) level. H$_2$O$_2$ treatment in cell line can increase ROS level, thereby inducing oxidative damage and cell death [33–35]. To investigate the cytoprotective effects of the maca extracts, H$_2$O$_2$ was treated with C2C12 myoblasts to induce oxidative stress.

As estimated by the MTT assay, the H$_2$O$_2$-treated control group induced approximately 30% of cytotoxicity as compared with the normal control group (no H$_2$O$_2$ treatment) (Fig. 6). However, the treatment of the cell with the maca extracts induced less reduction of cell viability than the H$_2$O$_2$-treated control group. The results indicated that the water and UA maca root extracts exhibited higher cytoprotective effects in oxidative stress condition than the ethanol extract. Rodríguez-Huamán [13] reported that 10 µg of maca methanol extract increased the cell viability of PC12 cell by 31% at 6 h-pretreatment of the extract. Their result indicated that the methanol extraction of maca confirmed the antioxidant capacity of maca.

Effects of maca extracts on creatine kinase activity

Creatine kinase (CK) converts creatine into phosphocreatine and ADP to maintain energy homeostasis during muscle contraction [36]. The level of CK was evaluated after H$_2$O$_2$ and sample treatment. The H$_2$O$_2$-
treated control group exhibited significantly higher CK level than the normal control group (Fig. 7). The treatments with the water extract and UA extracts resulted in significantly lower CK level than the H2O2-treated control group, which indicated the cell protective effects under the oxidative stress conditions.

Increased CK level indicates the cell damage and symptoms of fatigue which is activated and released in muscle through Phosphocreatine (PCr) system under the oxidative stress conditions [37]. In the previous studies, blood CK levels were significantly inhibited by various sample treatments in exercise-induced fatigue [38–41]. Furthermore, several in vivo studies demonstrated the anti-fatigue effects of maca treatment in mice [42–44]. Therefore, the results in this study suggest that maca treatment can play significant roles in muscle protection and anti-fatigue under oxidative stress condition in cellular levels.

Acknowledgments

This research was financially supported by the Ministry of Small and Medium-sized Enterprises (SMES) and Startups (MSS), Korea, under the “Regional Specialized Industry Development Program (R&D, SMEs and Startups (MSS), Korea, under the KIAT).”

http://dx.doi.org/10.4014/mbl.1911.11009

Conflict of interest

The authors have no financial conflicts of interest to declare.

References

