에어필터의 여과이론

이명화
강원대학교 건축토목환경공학부
조교수
E-mail: myonghwa@kangwon.ac.kr

1. 서 론

공기역학적 적정 기준으로 10 μm보다 작은 에어로졸을 미세먼지라 한다. 세계보건기구(WHO) 산하의 국제환경연구소(IARC)에서 미세먼지를 1그룹의 발암물질로 지정함에 따라 미세먼지는 전 국민의 관심사로 대두되었다(IARC, 2016). 최근 들어서는 대기환경에서 미세먼지의 고농도 현상이 지속적으로 발생함에 따라 정부에서는 차량통행 제한, 산업시설 및 건설공사장에 대한 조업시간 변경, 가동률 조정 등의 미세먼지 밀도감소조치를 발령하기에 이르렀다. 이러한 상황에서 국가재난에서 미세먼지 문제를 해결할 때까지 국민들이 할 수 있는 것은 외출할 때는 마스크를 착용하고, 실내에서는 공기청정기를 사용하는 것밖에 없다. 국민들의 건강에 대한 관심이 높아지기 때문에 생활환경 및 산업체에서 발생되는 먼지를 효과적으로 제거할 수 있는 다양한 방법들이 제시되어지고 있다. 이러한 방법들 중에 가장 일반적으로 널리 사용되고 있는 것이 에어필터이다. 생활환경에서는 보다 적절한 주거공간을 확보하기 위해서 공기청정기의 보편적으로 사용되고 있으며, 대부분의 공기청정기에는 에어필터가 장착되어 먼지를 거르는 역할을 하고 있다. 또한 산업체에서는 공정 중에서 배출되거나하는 먼지를 제거하기 위하여 여과점령장치가 일반적으로 사용되어 지고 있으며, 여과액이 그 핵심적인 역할을 하고 있다. 그러나 대부분의 사람들은 필터만 장착하면 모든 먼지를 제거할 수 있다고 생각하는 경향이 있다. 여기에서는 현장기술인력 뿐만 아니라 일반인들 을 대상으로 지속가능한 필터를 통과할 때 어떠한 원리에 의하여 작동이 되며, 점진효율을 높이기 위해서는 어떻게 하면 되는지를 여과이론에 근거하여 살펴보고자 한다.

2. 필터의 점진원리

필터에서 먼지의 점진 메커니즘을 그림 1에 나타 내었다. 일반적으로 공기 중, 흡입력, 작점자, 브라운 확산, 정전기력의 5가지로 나눌 수 있다. 먼 지의 입가가 크고 비중이 높 경우 이동하던 먼지가 중력에 의하여 점진이 이루어지며, 이로인한 작 은 크기의 먼지는 유체의 흐름이나 상층액에 의하여 설여와 충돌하여 점진이 이루어지게 된다. 또한 먼지가 유체의 흐름을 따라 이동하지만, 먼지 가 설유의 경계면에서 점진되는 직점차단이 작용하 며, 아주 작은 먼지의 경우에는 이들이 공기분자와 부딪혀서 브라운 확산에 의해 설유에 점진되게 된다. 상기의 메커니즘들을 기계적인 점진 메커니 즘이라 부른다. 그러나 설유 혹은 먼지 자체가 대전
되여 있을 경우에는 정전기력이 작용하게 된다. 정전
가력도 크게 3가지로 나눌 수 있다. Coulombic
force, 전기영상동력(Dielectrophoretic force), 영상력
(image force)가 있다.

물리력은 대전된 두 물체 사이에 작용하는 힘이며,
전기영상동력은 대전되어 있는 섬유의 영향으로 대전되
지 않은 먼지가 분극을 임으므로 작용하는 힘이며, 영상
력은 대전되어 있는 먼지에 의해서 섬유가 분극을
임으므로 작용하는 힘이다. 일반적으로 점진 페커니
증은 먼지의 크기, 유속, 섬유경에 따라 변화하게
된다.

![그림 1. 필터에서의 저반전 점진 메커니즘](image1)

그림 1. 필터에서의 저반전 점진 메커니즘

상기에서 각각의 파라메터가 필터의 점진효율에
영향을 미친다고 언급하였다. 이들은 그래프로 나
타내면 그림 2와 같다. 먼저 먼지의 크기가 점진효
율에 미치는 영향을 살펴보면, 먼지의 크기가 클수
록 증력, 관성력, 확산에 의한 점진효율을 증가
하는 반면 확산에 의한 점진효율은 감소하는 경향
을 보인다.

그림 2. 물리적인 특성이 점진효율에 미치는 영향

3. 점진효율 및 입력순서 예측방법

3.1. 대수통과법칙

필터를 통과하는 먼지에 대하여 질량보존법칙을
적용하게 되면, 필터의 점진효율(η)과 섬유 한 가닥
의 단일섬유 점진효율(η)과의 상관관계를 도출할
수 있다.

여기에서 섬유 한 가닥의 단일섬유 점진효율이라
는 섬유의 반경을 1로 하였을 때, 모든 먼지가
섬유에 점진되는 상향식의 높이, η로 정의된다. 즉,
η 이내로 유입된 먼지는 100% 섬유에 점진되게 되며,
정전기력과 같은 힘이 작용하게 되면 η가 1보
다 클 수도 있다.
그림 3. 단일섬유 집진효율의 개념

그림 4와 같이 도식화된 필터를 이용하면 \(E \)와 \(\eta \) 및 물리적 특성들과의 상관관계를 얻을 수 있다. 또한 섬유 한 기각의 단일섬유 집진효율, \(\eta \)는 이론적으로 계산이 가능하다. 그러므로 계산한 단일섬유 집진효율을 이용하여 대수통과법칙에 적용시킴으로써 필터의 집진효율 예측도 가능하다. 그림 4의 도식화된 필터를 이용하여 물질수지율을 세우면 식 (1)과 같다.

\[
CuA - \left[C + \frac{dC}{dx} \Delta x \right] uA = Cu_0 A d f \eta
\]

\(u = \frac{Q}{A}, \quad u_0 = \frac{Q}{A(1-\alpha)} \) 이므로

\(u_0 = \frac{u}{(1-\alpha)} \) 가 된다.

또한 \(\alpha = \frac{\text{packed fiber volume}}{\text{unit volume}} \) 로 표시되므로,

\(\frac{d\alpha}{\Delta x} \) 가 된다. \(\alpha \)은 필터 단위면적당 섬유의 길이를 나타낸다.

\[
\ln \left(\frac{C_i}{C_f} \right) = L P = -4 \frac{\alpha}{\pi(1-\alpha)} \frac{d_f}{L} \eta
\]

\[
\eta = \frac{\pi}{4} \frac{1-\alpha}{L \ln P} = -4 \frac{1-\alpha}{\pi} \frac{d_f}{L} \ln (1-E)
\]

식 (3)을 살펴보면, 위에서 설계한 바와 같이 필터의 충진율 \(a \), 필터의 두께 \(L \), 섬유경 \(d_f \)와 섬유의 단 일섬유 집진효율 \(\eta \)값을 대입함으로써 필터의 통과율, \(P \) 및 필터의 집진효율, \(E \)를 계산할 수 있다. 이것을 대수통과법칙(Log Penetration Relationship)이라 한다.

3.2. 단일섬유 집진효율

위에서 단일섬유 집진효율의 정의에 대하여 간단하게 언급하였으나, 필터에서 단일섬유 집진효율은 집진 메서니즘별로 도출이 되어 있다. 따라서 단일 섬유 집진효율 \(\eta \)는 다음의 식 (4)와 같이 표현되며, 유체의 흐름을 나타내는 무차원수와 각 집진 메서니즘을 나타내는 무차원수로 표현된다.

\[
\eta = \eta(Re, Kn, Pe, R_stk, G, K_{in}, K_{cf}, K_{df})
\]

\(u \) - face velocity
\(u_0 \) - filtration velocity
\(C_i \) - initial concentration
\(C_e \) - emitted concentration
\(L \) - total length of fiber
\(d_f \) - fiber diameter
\(a \) - packing density
\(\eta \) - single fiber collection efficiency
\(P \) - penetration
\[Re = \frac{\rho_d u_f}{\mu} \quad K_n = \frac{2\lambda}{d_f} \]
\[Pe = \frac{u_f d_f}{D} \quad R = \frac{d_p}{d_f} \quad Stk = \frac{C_p \rho_d u_0}{\rho \mu d_f} \]
\[G = \frac{C_p \rho_d d_p^2}{18 \mu u_0} \]
\[K_m = \frac{(\epsilon_p - 1) C_n c \rho d_p^2}{6(\epsilon_p + 2)\epsilon_0 (1 + \epsilon_f)^2 \mu d_f u_0} \]
\[K_C = \frac{C_n \rho c_0}{6\epsilon_0 (1 + \epsilon_f) \mu d_f u_0} \]
\[K_{nm} = \frac{(\epsilon_f - 1)}{12 \pi^2 \mu u_0 c_0 d_p d_f^2} \]

이기에서 \(Re \)와 \(Kn \)는 유체의 흐름과 관련된 파라미터이며, \(Pe \)는 확산, \(R \)는 직접차단, \(Stk \)는 편성력, \(G \)는 중력, \(K_m \)은 유기력, \(K_C \)는 콜로포리, \(K_{nm} \)은 영상력과 관련된 무차원 파라미터이다.

단일섬유 집전효율을 예측하기 위하여 그림 5와 같은 Fan Model Filter를 이용하였다(Kirsh and Setechkina, 1978). 이 모델필터는 모든 성분이 유체의 흐름에 대하여 직관적으로 근일하게 배치되어 있다고 가정하였다.

그림 5. Fan Model Filter의 구조

이러한 모델필터를 이용하여 확산과 직접차단이 주요 집전 메커니즘인 미세한 먼지에 대하여 식 (5)와 같은 단일섬유 집전효율이 제안되어 있다(Kirsh and Setechkina, 1978; Lee et al., 2020).

\[\eta' = \eta_D' + \eta_R' + \eta_{DR}' \]

\[\eta_D' = 2.7 Pe^{-2/3} \left\{ 1 + 0.39(k_f')^{1/3} Pe^{1/3} Kn \right\} + 0.024Pe^{-1} \]

\[\eta_R' = 0.5 \ln 0.5 - 0.52 + 0.64 \alpha + (1 - \alpha) Kn \]

\[\eta_{DR}' = 1.24 (k_f')^{-1/2} Pe^{-1/2} R^{2/3} \]

\[k_f' = -0.5 \ln 0.5 - 0.52 + 0.64 \alpha + (1 - \alpha) Kn \]

이와 같이 얻어진 단일섬유 집전효율을 식 (3)에 대입하여 필터의 집전효율을 예측할 수 있다. 정전기 효과가 작용하는 경우에 대해서 복잡한 단일섬유 집전 효율 예측식이 사용되었다. 이에 대해서는 Otani 등의 실험연구를 참조하기 바란다(Otani et al., 1993).

3.3 압력손실 예측법

단일섬유 집전효율을 예측할 때와 마찬가지로 Fan Model Filter를 이용하여 압력손실을 예측하게 된다. 압력손실 예측식은 식 (6)에 나타내었다.

\[\Delta P = F \ln I \]

이기에서, \(I \)은 필터 단위면적당의 성유길이를 나타내며, \(F \)는 무차원 항력으로서 \(F = \frac{4\pi}{k} \)

\[k' = k, \quad C_p = \frac{2F}{Re} \]

을 나타낸다.

이기에서 \(I \)은 필터 단위면적당의 성유길이를 나타낸다. 또한 수평적 인자인 \(k \)는 다음과 같이 표시된다.

\[k_f = -0.5 \ln 0.5 + 0.25 \alpha^2 - 0.75 : Kusabara \quad k' = -0.5 \ln 0.5 + 0.25 \alpha - (\frac{\alpha}{\pi})^2 - \frac{3}{4} : FMF \]

상기와 같은 방법을 이용하여 얻은 필터의 압력손실은 다음의 식 (7)과 같이 표시된다.
\[\Delta p = \frac{\alpha L}{(\pi/4) d_f^2} \frac{u}{1 - \alpha} \mu F = \frac{\alpha L}{(\pi/4) d_f^2} \frac{u}{1 - \alpha} \mu \frac{Re C_p}{2} \]

(7)

3.4 필터성능지수

필터의 성능을 나타내는데 가장 중요한 척도가 집진효율과 압력손실이다. 즉, 좋은 필터는 수폭 집진효율이 높고 압력손실이 낮다. 동일한 필터의 성능을 비교하기 위해서는 성능을 평가할 수 있는 지표가 필요하다. 이러한 필터의 성능을 나타내는 것이 필터의 성능지수(Filter Quality Index)이다. 필터의 성능지수는 다음의 식 (8)과 같이 정의된다. 식에서 \(\frac{\eta}{C_p} \)는 집진효율을 나타내고, \(\frac{p}{u^2} \)는 압력손실을 나타낸다. 이들의 비로서 필터의 성능지수를 정의하게 되므로, 집진효율이 높을수록, 압력손실이 낮을수록 \(Q_F \)의 값이 커지게 된다.

\[Q_F = \frac{-\ln \frac{P}{\Delta p}}{\frac{\eta}{C_p} \frac{p}{u^2}} \]

(8)

이 필터의 성능지수를 도식화하면 그림 6과 같이 표시할 수 있다. 그림에서 보는 바와 같이 \(X \)축에 압력손실, \(Y \)축에 필터의 집진효율을 나타내면, 그 기울기가 필터의 성능지수이다. 기울기가 클수록, 즉 동일한 집진효율에서 압력손실이 작을수록 성능이 좋은 필터를 나타낸다(Filter A > Filter B).

그림 6. 필터의 성능지수의 개념

4. 산업용 여과백

설탕상 여과백은 그림 7에서 보는 바와 같이 먼지가 여과백에 유입되어 여과체의 깊숙한 부분까지 침투한다는 것을 알 수 있다. 먼지가 여과체 내부까지 침투하게 되면 충격기류에 의해 발생한 먼지를 여과백으로부터 분리하는 것이 대단히 어렵기 뿐만 아니라 필터의 수명이 짧아진다는 단점이 있다.

그림 7. 삼중여과와 표면여과의 비교
반면, 표면층 형성 여과체는 먼지가 표면층에 집중되어 캐익층을 형성함으로써, 충격기류에 의하여 탈진이 쉽게 이루어지는 것을 알 수 있다. 이에 따라 표면여과형 여과체의 수요가 점차 증가하고 있다. 또 하나의 장점으로서, 표면여과형 여과체의 전단에 탈진재를 수입하게 되면, 탈진제 자체가 캐익층을 형성하여 여과체 표면에서 탈진이 이루어진다는 장점도 있다.

산업용 여과체는 일반적으로 여과징장치내에 장착되어 수년간 사용하는 핵심부품이므로 집진효율보다는 탈진효율이 더 중요한 성능평가의 지표로 작용한다. 그림 8에서 볼 수 있는 바와 같이, 산업용 여과체는 고농도의 먼지가 유입되고 필터의 초기 집진효율이 아주 높지는 않지만 먼지가 집진됨에 따라 필터의 집진효율이 급격하게 증가하게 된다 (Park et al., 2012).

그러므로 먼지가 필터에 집전되어 압력손실이 높아져 필터의 소요동력이 증가하게 되면 충격기류를 이용하여 탈진을 하게 된다. 탈진이 잘 되는 필터가 좋은 필터이며, 이를 반영하는 개념으로서 탈진효율을 사용하고 있다. 탈진효율 (e_d)은 초기압력손실 (ΔP_{in}), 목표압력손실 (ΔP_{mid}), 잔류압력손실 (ΔP_{out})을 이용하여 식 (9)와 같이 정의할 수 있다.

$$e_d = \frac{\Delta P_{mid} - \Delta P_{in}}{\Delta P_{out} - \Delta P_{in}} \times 100$$

(9)

아래의 그림 9는 탈진기간이 길어지면 성능이 약화된 여과징장치내의 압력손실 변화를 보여준다. 여과체의 여과징장치에 장착하게 되면 운전시간 0에

그림 8. 산업용 여과체에서 시간에 따른 집진효율의 변화

6 공기청정기술 Air Cleaning Technology
서의 초기압력손실인 \(\Delta P_{lo} \) 값을 나타낸다. 그러나 먼저가 점점되게 되면 압력손실이 점차 높아지게 되고, 정해진 시간이 되면 압력손실이 \(\Delta P_{hi} \)에 도달하게 되고 탈진이 이루어지게 된다. 먼저 탈진이 이루어지더라도 압력손실이 초기압력손실까지 떨어지지 않는 경우에 압력손실을 계기하게 되는데 이를 전류압력손실(\(\Delta P_{pu} \))이라 한다. 일반적으로 전류 압력손실(\(\Delta P_{pu} \))이 일정한 값을 유지하는데, 이 값이 급격하게 증가하게 되면 필터를 교체하여야 할 시점이 된다.

그림 9. 산업용 여과에서 시간에 따른 압력손실의 변화

5. 결론

대부분의 사람들이 저압력손실, 고압력손실의 고성능 필터를 만들고 싶어한다. 이를 위해서는 경험 도 중요하지만, 여기에 언급한 여과이론과 기법을 두어 필터를 설계하여야 시행착오를 줄일 수 있을 것이다.

앞에서 살펴본 바와 같이 여과속도, 성유의 적정, 필터의 두께, 충진율 등이 필터의 성능에 크게 영향을 미치게 된다. 그러나 공기정청을 위해 처리하고자 하는 가스의 유량을 조절하는 것은 쉽지 않으므로 대용량 처리를 위해서는 여과면적을 넓힌 점은 필터의 개발이 이루어져야 하며, 고성능을 확보하기 위해서는 필터의 물리적인 특성(성유의 적정, 필터의 두께, 충진율 등)을 조절하는 것이 필요하다. 즉, 성유의 적정을 가늘게 할수록 충진율을 높일수록 집진효율은 높아지나 압력손실 또한 높아지므로, 이들을 동시에 고려한 필터성능지수 값을 토대로 한 설계가 이루어져야 할 것이다.

- 참고문헌 -