DOI QR코드

DOI QR Code

소동물 영상화 및 환경 방사선 검출을 위한 감마카메라 개발

Development of Gamma Camera System for Small Animal Imaging and Environmental Radiation Detection

  • 백철하 (동서대학교 방사선학과)
  • 투고 : 2013.10.01
  • 심사 : 2014.01.08
  • 발행 : 2014.02.28

초록

이 연구의 목적은 감마선 검출 시스템을 개발하여 평행구멍형 조준기와 바늘구멍 조준기를 이용하여, 각각 소동물용 감마영상 획득과 환경 방사선 검출 영상을 획득하는 것이다. 본 연구에서는 크기가 $50{\times}50mm$ 이며, 6 mm 두께의 CsI(Tl) 섬광체와 $50{\times}50mm$ 크기의 Hamamatsu H8500C 위치민감형 광전자증배관, 저항분배회로, 전치증폭기, 성형증폭기, NIM 모듈 및 아날로그 디지털 변환기로 구성된 감마카메라를 개발하였다. 또한. 바늘구멍 감마카메라와 전하결합소자 카메라를 결합하여 환경모니터링에 적용할 수 있는 장비를 개발하였다. 본 연구 결과는 평행 구멍형 조준기와 바늘구멍 조준기를 이용한 감마카메라를 각각 소동물용 감마영상 획득과 환경방사선 측정에 적용 할 수 있음을 보여주었다. 이 시스템은 소 동물전용 감마카메라와 환경방사선 측정 시스템으로 활용 될 수 있을 것이다.

The aim of this work was to develop the gamma camera system for small animal gamma imaging and environmental radiation monitoring imaging using a parallel hole collimator and pinhole collimator. The small gamma camera system consists of a CsI(Tl) scintillation crystal with 6 mm in thickness and $50{\times}50mm$ in area coupled with a Hamamatsu H8500C PSPMT, are resistive charge divider, pre-amplifiers, charge amplifiers, nuclear instrument modules (NIMs), an analog to digital converter and a computer for control and display. We have developed a radiation monitoring system composed of a combined pinhole gamma camera and a charge-coupled devices (CCD) camera. The results demonstrated that the parallel hole collimator and pinhole collimator gamma camera designed in this study could be utilized to perform small animal imaging and environmental radiation monitoring system. Consequently in this paper, we proved that our gamma detector system is reliable for a gamma camera which can be used as small animal imaging and environmental radiation monitoring system.

키워드

참고문헌

  1. F. Beekman and F. Have, "The pinhole: gateway to ultra-high resolution three-dimensional radio-nuclide imaging," Eur. J. Nucl. Med. Mol. Imaging, Vol.34, No.2, pp.151-161, 2007. https://doi.org/10.1007/s00259-006-0248-6
  2. A. G. Weisenberger, E. L. Bradley, and S. Majewski, "Development of a Novel Radiation Imaging Detector System for In Vivo Gene Imaging in Small Animal Study," IEEE Trans. Nucl. Sci., Vol.50, No.3, pp.74-79, 2003. https://doi.org/10.1109/TNS.2002.807949
  3. A. G. Weisenberger, B. Kross, and S. Majewski, "Design Features and Performance of a CsI(Na) array based gamma camera for small animal gene research," IEEE Trans. Nucl. Sci., Vol.45, No.6, pp.3053-3058, 1998. https://doi.org/10.1109/23.737663
  4. Y. Qi, "Optimized collimator designs for small animal SPECT imaging with a compact gamma camera," IEEE Eng. Med. Biol. Soc., Vol.2, pp.1780-1782, 2005.
  5. R. J. Jaszczak, L. Jianying, and, H. Wang, "Pinhole collimation for ultra-high-resolution, small-field-of-view spect," Phys. Med. Biol. Vol.39, No.3, pp.425-37, 1994. https://doi.org/10.1088/0031-9155/39/3/010
  6. Z. Liu, G. A. Kastis, and G. D. Stevenson, "Quantitative analysis of acute myocardial infarct in rat hearts with ischemia- reperfusion using a high-resolution stationary SPECT system," J. Nucl. Med. Vol.43, No.7, pp.933-939, 2002.
  7. D. P. McElroy, R. L. Macdonald, and F. Beekman, "Performance evaluation of a-SPECT: a high resolution desktop pinhole SPECT system for imaging small animals," IEEE Trans. Nucl. Sci. Vol.49, No.5, pp.2139-2147, 2002. https://doi.org/10.1109/TNS.2002.803801
  8. S. R Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol., Vol.49, No.3, pp.R13-R48, 2004. https://doi.org/10.1088/0031-9155/49/3/R01
  9. O. Gal, M. Gmar, and O. P. Ivanov, "Development of a portable gamma camera with coded aperture," Nucl. Instrum. Methods Phys. Res. A, Vol.563, No.1, pp.233-237, 2006. https://doi.org/10.1016/j.nima.2006.01.119
  10. W. Lee and G. Cho, "Pinhole collimator design for nuclear survey system," Annals of Nuclear Energy, Vol.29, No.17, pp.2029-2040, 2002. https://doi.org/10.1016/S0306-4549(02)00031-2
  11. M. Gimenez, "Medium field of view multiflat panel-based portable gamma camera," Nucl. Instrum. Methods Phys. Res. A, Vol.525, No.1-2, pp.298-302, 2004. https://doi.org/10.1016/j.nima.2004.03.077
  12. R. Redus, J. S. Gordon, and P. Bennett, "An imaging nuclear survey system," IEEE Trans. Nucl. Sci., Vol.43, No.3, pp.1827-1831, 1996. https://doi.org/10.1109/23.507230
  13. C. H. Baek, S. J. Lee, and Y. Choi, "Optimization of Large-Angle Pinhole Collimator for Environmental Monitoring System," IEEE Trans. Nucl. Sci., Vol.57, No.3, pp.1404-1408, 2010. https://doi.org/10.1109/TNS.2009.2039877
  14. M. Woodring, D. Beddingfield, and D. Souza, "Advanced multi-dimensional imaging of gamma-ray radiation," Nucl. Instrum. Methods Phys. Res. A. Vol.505, pp.415-419, 2003. https://doi.org/10.1016/S0168-9002(03)01111-2
  15. J. G. Bong, H. J. Kim, and J. D. Lee, "Computer Simulation for Effects of scintillator and parallel hole collimator on gamma probe imaging," Journal of Kor. Soc. of Med. Biol. Eng. Vol.19, No.6, pp.563-570, 1998.
  16. H. O. Anger, "Scintillation camera," The Review of Scientific Instruments, Vol.29, No.1, pp.27-33, 1958. https://doi.org/10.1063/1.1715998
  17. D. A. Weber and M. Ivanovic, "Ultra-highresolution imaging of small animals: Implications for preclinical and research studies," Journal of Nucl. Cardiology, Vol.6, pp.332-344, 1999. https://doi.org/10.1016/S1071-3581(99)90046-6
  18. R. Accorsi, F. Gasparini, and R. Mayans, "A coded aperture for high resolution nuclear medicine planar imaging with a conventional anger camera: experimental results," IEEE Trans. Nucl. Sci., Vol.48, No.4, pp.2411-2417, 2001. https://doi.org/10.1109/23.983251
  19. J. Edward, "$GammaModeler^{TM}$ 3-D Gamma-Ray Imaging Technology," U.S. Department of Energy office of Environmental Management Office of Science and Technology, Summary Report.