Efficient VLSI architecture for one-dimensional discrete wavelet transform using a sealable data reorder unit

  • Park, Taegeun (Department of Computer and Electronic Engineering, Catholic University of Korea)
  • Published : 2002.07.01

Abstract

In this paper, we design an efficient, scalable one-dimensional discrete wavelet transform (1DDWT) filter using data reorder unit (DRU). At each level, the required hardware is optimized by sharing multipliers and adders because the input rate is reduced by a factor of two at each level due to decimation. The proposed architecture shows 100% hardware utilization by balancing hardware with input rate. Furthermore, sharing the coefficients of the highpass and the lowpass filters using the mirror filter property reduces the number of multipliers and adders by half. We designed a scalable DRU that efficiently reorders and feeds inputs to highpass and lowpass filters. The proposed DRU-based architecture is so regular and scalable that it can be easily extended to an arbitrary 1D DWT structure with M taps and J levels. Compared to other architectures, the proposed DWT filter shows efficiency in performance with relatively less hardware.

Keywords