Abstract
Characteristics of flow rate control has been studied for a cavitating venturi adopted in a liquid rocket propellant feed system. Numerical simulation has been peformed to give about $10\%$ discrepancy of mass flow rate to the experimental data for cavitating flow regime. Mass flow rate is confirmed to be saturated for pressure difference higher than $3\times10^5$pa when the upstream pressure is fixed to $22.8\times10^5$pa and the downstream pressure is varied. The evaporation amount depends substantially to non-condensable gas concentration. However the mass flow rate characteristic is relatively insensitive to the mass fraction of non-condensable gas. So it is reduced by only $2\%$ when the non- condensable gas concentration is increased from 1.5PPM to 150PPM. From the previous comparison the expansions of the non-condensable gas and the evaporation of liquid are verified to have same effect to pressure recovery.