Transient Analysis of Delaminated Smart Composite Laminates

층간 분리가 있는 지능형 복합재 적층판의 과도응답해석

  • Published : 2004.11.01

Abstract

The transient analysis of delaminated smart composite laminates is studied using an improved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The presence of discrete delamination is modeled through the use of Heaviside unit step functions. Stress free boundary conditions are enforced at all fee surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plates with delamination, subject to external loads and voltage history from surface bonded sensors, are investigated and the results are compared with corresponding experimental results and plates without delamination.

Keywords