Two-dimensional isotropic patterns for core materials in applications to sandwich structures

샌드위치 구조물 내에서의 응용과 관련된 2차원 단위 셀 형상을 지닌 심재에 대한 연구

  • Kim, Beom-Keun ;
  • Christensen, R.M. (Aeronautics & Astomautics, Stanford Univ.)
  • 김범근 (인제대학교 기계자동차공학부) ;
  • Published : 2007.05.30

Abstract

The mechanical characteristics of three types of core with two-dimensional isotropic patterns-triangular, hexagonal and starcell-were studied in applications to sandwich structures. The Young's modulus and shear modulus were calculated for the three core types in the direction normal to the faces. The compressive buckling strength and shear buckling strength were calculated by modeling each cell wall of the core as a plate under compressive or shear load. To verify this model, tests were conducted on scaled specimens to measures the compressive buckling strength of each core. The bending flexibilities of the three cores were also studied. Compliances for the three cores were measured using biaxial flexural tests. The three isotropic core patterns exhibited distinct characteristics. In the direction normal to the faces, all three cores had the same stiffness. However, the starcell core exhibited high flexibility compared to the other cores, indicating potential for application to curved sandwich structures.

Keywords