Lebesgue-Stieltjes Measures and Differentiation of Measures

  • 투고 : 1986.05.01
  • 심사 : 1986.06.21
  • 발행 : 1986.08.01

초록

The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

키워드

과제정보

연구 과제 주관 기관 : Chonbuk National University