Study on Gaseous Nitrocarburizing Treatment

가스침질탄화법(浸窒炭化法)에 관한 연구(硏究)

  • Lee, S.Y. (Dept. of Metallurgical Engineering, Dong-A University) ;
  • Bell, T. (Dept. of Metallurgy and Materials, The University of Birmingham)
  • 이상윤 (동아대학교 금속공학과) ;
  • Published : 1988.12.26

Abstract

This study has been carried out to evaluate gaseous nitrocarburizing treatment undertaken for pure iron at $570^{\circ}C$ in an atmosphere containing 50% endothermic gas, generated from natural gas, and 50% ammonia. The results obtained from the experiment are as follows ; 1) The microstructure of gaseous nitrocarburized pure iron consists of the compound layer on the surface and the diffusion zone beneath it. The compound layer progresses uniformly into ferrite with a thickness of $20{\mu}$ obtained after treating for 3 hours. 2) Chemical analysis has shown that the compound layer has a C/N ratio of 0.19 and that the average combined interstitial content of the compound layer is about 30 atomic percent, which is close to the lower limit of the ${\varepsilon}$-carbonitride phase field in Fe-C-N phase diagram. 3) X-ray diffraction analysis has revealed that the compound layer consists mainly of the c.p.h. phase, ${\varepsilon}-Fe_3$(C.N) and a small amount of $Fe_4N$ and traces of ferrite are also present in the compound layer. 4) The microhardness of the compound layer is about 600 V.H.N and shows a relatively sharp fall-off at the compound layer/diffusion zome interface. 5) The average actual degree of ammonia dissociation is calculated to be 27% for a gaseous nitrocarburizing treatment carried out at $570^{\circ}C$.

Keywords