Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method

Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석

  • Published : 1989.01.01

Abstract

In this paper, two-dimensional numerical simulation of GaAs MESFFT with 0.7${\mu}m$ gate length is perfomed. Drift-diffusion model which consider that mobility is a function of local electric field, is used. As a discretization method, instead of FDM (finite difference method) and FEM (finite element method), the Control-Volume Formulation (CVF) is used and as a numerical scheme current hybrid scheme or upwind scheme is replaced by power-law scheme which is very approximate to exponential scheme. In the process of numerical analysis, Peclet number which represents the velocity ratio of drift and diffusion, is introduced. And using this concept a current equation which consider numerical scheme at the interface of control volume, is proposed. The I-V characteristics using the model and numerical method has a good agreement with that of previous paper by others. Therefore, it is confined that it may be useful as a simulator for GaAs MESFET. Besides I-V characteristics, the mechanism of both velocity saturation in drift-diffusion model is described from the view of velocity and electric field distribution at the bottom of the channel. In addition, the relationship between the mechanism and position of dipole and drain current, are described.

본 논문에서는 게이트의 길이가 0.7${\mu}m$인 n형 GaAs MESFET를 2차원적으로 수치 해석하였으며, 이동도를 국부 전계의 함수로 취하는 드리프트 -확산 모델을 사용하였다. 이산화 방법으로는 종래에 사용되던 FDM(finite difference method), FEM(finite element method)을 사용치 아낳고 Control-Volume Formulation을 사용하였으며, numerical scheme으로는 기존의 hybrid scheme이나 upwind scheme 대신에 exponential scheme과 거의 근사한 power-law scheme을 사용하였다. 이때 드리프트 속도와 확산 속도의 비율을 나타내는 Peclet number의 개념을 사용하였으며, 이 개념을 사용하여 control volume의 경계에서 numerical scheme을 고려한 전류식을 제안하였다. 앞에서 고려한 모델들과 수치해석 방법을 사용하여 시뮬레이션한 I-V 특성은 기존 노문의 결과와 일치하였다. 따라서 본 논문의 결과가 GaAs MESFET를 위한 유용한 2차원 시뮬레이터가 될 수 있음을 확인하였다. 또한 I-V 특성외에 채널 밑바닥에서이 속도 및 전계 분포를 통해 드리프트-확산 모델을 고려한 경우에 발생하는 속도 포화의 메카니즘을 제시했고, Dipole의 발생위치 및 발생 원인과 드레인 전류와의 관계 등에 대해서도 제시했다.

Keywords