Biosynthesis of $\beta$-Lactam Antibiotics by Cell-free Extract from Lysobacter lactamgenus

  • Published : 1992.09.01

Abstract

Using cell-free extract of Lysobacter lactamgenus, enzymatic conversion of $\delta$-L-($\alpha$-aminoadiphyl)-L-cysteinyl-D-valine (ACV) the first substrate of $\beta$-lactam biosynthesis, into antibiotic compounds was attempted. In high performance liquid chromatographic (HPLC) analysis, the biosynthetic intermediates for cephalosporin antibiotics including isopenicillin N, deacetoxycephalosporin C, deacetylcephalosporin C and unknown cephem compound were detected in reaction mixtures. It implies that cephabacin compounds from L lactamgenus could be produced by biosynthetic routes through penicillin ring formation and its expansion to cephalosporin ring, likely as cephalosporin C from Cephalosporium or cephamycin C from Streptomyces. Among biosynthetic enzyme in cell-free extract, the ring formation activity (isopenicillin N synthetase activity) was separated in 50-60% of ammonium sulfate fraction, and ring expansion activity (deacetoxycephalosporin C synthetase activity) was found to be in 40-50% fraction. The partially purified isopenicillin N synthetase could convert as much as 90% ACV to isopenicillin N during 6-hour reaction.

Keywords