Abstract
In this paper we develop an approximation formalism on the queue length distribution for general queueing models. Our formalism is based on two steps of approximation; the first step is to find a lower bound on the exact formula, and subsequently the Chernoff upper bound technique is applied to this lower bound. We demonstrate that for the M/M/1 model our formula is equivalent to the exact solution. For the D/M/1 queue, we find an extremely tight lower bound below the exact formula. On the other hand, our approach shows a tight upper bound on the exact distribution for both the ND/D/1 and M/D/1 queues. We also consider the $M+{\Sigma}N_jD/D/1$ queue and compare our formula with other formalisms for the $M+{\Sigma}N_jD/D/1$ and M+D/D/1 queues.