Structure-Antagonistic Activity Relationships of an NK-2 Tachykinin Receptor Antagonist, L-659,877 and Its Analogues

  • Ha, Jong-Myung (Department of Chemistry, College of Natural Sciences, Pusan Women's University) ;
  • Shin, Song-Yub (Peptide Engineering Research Unit, Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Hong, Hea-Nam (Department of Anatomy, College of Medicine, University of Ulsan) ;
  • Suh, Duk-Joon (Department of Physiology, College of Medicine, Dong-A University) ;
  • Jang, Tae-Sik (Department of Chemistry, College of Natural Sciences, Pusan National University) ;
  • Kang, Shin-Won (Department of Chemistry, College of Natural Sciences, Pusan National University) ;
  • Kuean, Sun-Jin (Department of Food Science & Nutrition, College of Home Economics, Pusan National University) ;
  • Ha, Bae-Jin (Department of Chemistry, College of Natural Sciences, Pusan Women's University)
  • Received : 1996.05.02
  • Published : 1996.09.30

Abstract

To investigate the structure-antagonistic relationship of the cyclohexapeptide L-659,877, a selective NK-2 tachykinin receptor antagonist, seven analogues were chemically synthesized by a solid phase method. The agonistic and antagonistic activities of the analogues were evaluated by contraction assay using the smooth muscle of guinea pig trachea (GPT) containing the NK-2 receptor. It was shown that the aromatic ring of Phe at position 3 and the sulfur group of Met at position 6 in L-659,877 were essential for binding to the NK-2 receptor. Decrease in antagonistic activity of L-659,877 caused by substituting Leu for Nle at position 5 indicates that the ${\gamma}$ methyl group and side chain length of Leu plays an important role in its antagonistic action. Although the activity was slightly lower than L-659,877, cyclo $[{\beta}Ala^{8}]NKA(4-10)$ (analogue 1) showed potential antagonistic activity for the NK-2 receptor. It was confirmed that the expansion of the ring in L-659,877 by substitution of ${\beta}Ala$ for Gly at position 4 stabilized its conformation monitored by CD spectra. The results suggest that analogue 1 can be used as a new leader compound to design a more powerful, selective, and stable NK-2 receptor antagonist.

Keywords

References

  1. Int. J. Pept. Protein Res. v.44 Amodeo, P.;Rovero, P.;Saviano, G.;Temussi, P.A.
  2. Science v.226 Buck, S.H.;Burcher, E.;Schultz, C.W.;Lovenberg, W.;O'Donarce, T.L. https://doi.org/10.1126/science.6095447
  3. Nature v.232 Chang, M.M.;Leeman, S.E.;Nial, H.D.
  4. Drugs Future v.12 Dutta, A.S.
  5. J. Physiol. Lond. v.72 Euler, U.S. von;Gaddum, J.H. https://doi.org/10.1113/jphysiol.1931.sp002763
  6. Acta Chem. Scand. Ser. v.B40 Folerts, K.;Rosell, S.;Chu, J.Y.;Lu. L.A.;Tang, P.F.L.;Ljungqvist, A.
  7. Anal. Biochem. v.34 Kaiser, E.;Colescott, R.L.;Bossinger, C.D.;Cook, C.D. https://doi.org/10.1016/0003-2697(70)90146-6
  8. Proc. Jpn. Acad. v.58B Kimura, S.;Okada, M.;Sugita, Y.;Kanazawa, I.;Munekata, E.
  9. Eur. J. Pharmacol. v.130 Lee, C.M.;Campbell, N.J.;William, B.J.;Iversen, L.L. https://doi.org/10.1016/0014-2999(86)90270-0
  10. Br. J. Pharmacol. v.100 Maggi, C.A.;Patacchini, R.;Giuliani, S.;Rovero, P.;Dion, S.;Regoli;Giachetti, A.;Meli, A. https://doi.org/10.1111/j.1476-5381.1990.tb15851.x
  11. Drugs Future v.18 Maggi, C.A.;Quartara, L.;Giuliani, S.;Patacchini, R.
  12. Peptides v.6 Maggio, J.E.
  13. Int. J. Peptide Protein Res. v.39 Malikayil, J.A.;Harbeson, S.L.
  14. Life Sci. v.40 Martling, C.R.;Theodorsson-Norheim, E.;Lundberg, J.M. https://doi.org/10.1016/0024-3205(87)90130-5
  15. Nature v.329 Masuo, Y.;Nakayama, K.;Tamaki, H.;Harada, Y.;Kuno, M.;Nakanishi, S. https://doi.org/10.1038/329836a0
  16. Comp. Biochem. Physiol. v.98C no.1 Munekata, E.
  17. Bull. Chem. Soc. Jpn. v.59 Narita, M.;Doi, M.;Kubo, K.;Terauchi, Y. https://doi.org/10.1246/bcsj.59.3553
  18. Pharmacology v.38 Regoli, D.;Drapeau, G.;Dion, S.;D'Orleans-Juste, P. https://doi.org/10.1159/000138512
  19. Eur. J. Pharmacol. v.174 Rogers, D.F.;Aursudkij, B.;Barnes, P.J. https://doi.org/10.1016/0014-2999(89)90322-1
  20. Peptides v.10 Rovero, P.;Pestellini, R.;Patacchiini, R.;Giuliani, S.;Santicioli, P.;Maggi, C.A.;Meli, A.;Giachetti, A. https://doi.org/10.1016/0196-9781(89)90148-4
  21. Br. J. Pharmacol. v.2 Schild, H.O.
  22. Peptides v.12 Shanab, A.A.A.;Allen, J.M.;Guthrie, D.J.S.;Irvine, G.J.;Murphy, R.F.;Walker, B. https://doi.org/10.1016/0196-9781(91)90062-T
  23. J. Biol. Chem. v.265 Shigemoto, R.;Yokota, Y.;Tsuchida, K.;Nakanishi, S.
  24. Korean Biochem. J. (presently J. Biochem. Mol. Biol.) v.26 Shin, S.Y.;Ha, J.M.;Ha, B.J.;Munekata, E.
  25. Korean Biochem. J. (presently J. Biochem. Mol. Biol.) v.27 Shin, S.Y.;Ha, J.M.;Ha, B.J.;Jang, T.S.;Kang, S.Y.;Munekata, E.
  26. Brain Res. v.528 Takano, T.;Nagashima, A.;Hagio, T.;Tateishi, K.;Kamiya, H. https://doi.org/10.1016/0006-8993(90)91662-Z
  27. Life Sci. v.25 Tallarida, R.J.;Cowan, A.;Adler, M.W. https://doi.org/10.1016/0024-3205(79)90505-8
  28. Am. Rev. Resp. Dis. v.136 Uchita, Y.;Nomura, A.;Ohtsuka, M. https://doi.org/10.1164/ajrccm/136.3.718
  29. Arch. Int. Pharmacodyn. v.143 Van Rossum, J.M.
  30. J. Med. Chem. v.36 Williams, B.J.;Curtis, N.R.;McKnight, A.T.;Maquire, J.J.;Young, S.C.;Veber, D.F.;Baker, R. https://doi.org/10.1021/jm00053a001
  31. Int, J. Pept. Protein Res. v.41 Wollborn, U.;Brunne, R.M.;Harting, J.;Holzmann, G.;Leibfriz, D.