Purification and Characterization of Tyrosinase from Solanum melongena

  • Lee, Jong-Liong (Department of Chemistry, College of Natural Science, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Natural Science, Chung-Ang University) ;
  • Cho, Sung-Hye (Department of Chemistry, College of Natural Science, Chung-Ang University)
  • Received : 1997.01.20
  • Published : 1997.03.31

Abstract

Tyrosinase was purified from Solanum melongena by ammonium sulfate precipitation, Sephadex G-150 and DEAE-Sephacel column chromatography. The molecular weight of the purified tyrosinase was approximately 88,600 daltons with 805 amino acid residues. The amino acid composition showed the characteristic high contents of glycine, glutamic acid and serine residues. The enzyme had high substrate specificity towards (+)-catechin. The $K_m$, value for L-DOPA was 20.8 mM. L-ascorbic acid, ${\beta}-mercapto-ethanol$, sodium diethyldithiocabamate, KCN and $NaN_3$ had strong inhibitory effects on enzyme activity. Sodium diethyldithiocabamate was a competitive inhibitor of the enzyme with a $K_i$ value of $5.2{\times}10^{-2}\;mM$. The optimum pH of the enzyme was 9.0 and the optimum temperature was $65^{\circ}C$ with L-DOPA as a substrate. In addition, the activity was enhanced by addition of $Ca^{+2}$ or $Cu^{+2}$, but decreased in the presence of $Fe^{2+},Fe^{3+}$ and $Zn^{2+}$ ions.

Keywords

References

  1. Phytochem. v.27 Alvaro, S.F.;Roque, B.;Juana, C.;Franciscio, G.C. https://doi.org/10.1016/0031-9422(88)83089-9
  2. Phytochem. v.20 Anosike, E.O.;Ayaebene, A.O. https://doi.org/10.1016/0031-9422(81)85256-9
  3. Biochem. J. v.118 Balasingam, K.;Ferdinand, W. https://doi.org/10.1042/bj1180015
  4. J. Food Sci. v.38 Benjamin, N.D.;Montgomery, M.W. https://doi.org/10.1111/j.1365-2621.1973.tb02079.x
  5. The Biochemistry of Plant, Vol. 2 Butt, V.S.;Davies, D.D.(ed.)
  6. J. Biol. Chem. v.245 Duckworth, H.W.;Coleman, J.E.
  7. Phytochem. v.35 Gerritsen, Y.A.M.;Chapelon, C.G.J.;Wichers, H.J. https://doi.org/10.1016/S0031-9422(00)90563-6
  8. J. Food Sci. v.43 Halim, D.H.;Montgomery, M.W.
  9. J. Agric. Food Chem. v.38 Janovitz-Klapp, A.H.;Richard, F.C.;Goupy, P.M.;Nicolas, J.J. https://doi.org/10.1021/jf00097a001
  10. Physiol. Plant. v.72 Kevin, C.V.;Alan, R.L.;Stephen, O.D. https://doi.org/10.1111/j.1399-3054.1988.tb09180.x
  11. Phytochem. v.16 Kodron, M.;Harel, E.;Mayer, A.M. https://doi.org/10.1016/S0031-9422(00)86724-2
  12. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.29 Kwon, D.Y.;Kim, W.Y.
  13. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  14. Mol. Cell. Biochem. v.52 Lerch, K.
  15. J. Biol. Chem. v.193 Lowry, O.H.;Rosebrough, N.J.;Lewis Farr, A.;Randall, R.J.
  16. J. Food Sci. v.37 Luh, B.S.;Phithakpol, B. https://doi.org/10.1111/j.1365-2621.1972.tb05832.x
  17. Phytochem. v.26 Mayer, A.M.
  18. J. Food Sci. v.50 Park, E.Y.;Luh, B.S. https://doi.org/10.1111/j.1365-2621.1985.tb13771.x
  19. J. Food Sci. v.45 Paulson, A.T.;Vanderstoep, J.;Porrit, S.W. https://doi.org/10.1111/j.1365-2621.1980.tb02610.x
  20. Methods in Enzymology, Vol. 182 Rauchsen, P.
  21. Phytochem. v.34 Raymond, J.;Rakariyatham, N.;Azanza, J.L. https://doi.org/10.1016/S0031-9422(00)90689-7
  22. Pigm. Cell Res. v.6 Riley, P.A. https://doi.org/10.1111/j.1600-0749.1993.tb00600.x
  23. Phytochem. v.4 Robb, D.A.;Mapson, L.W.;Swain, T. https://doi.org/10.1016/S0031-9422(00)86242-1
  24. J. Food Sci. v.20 Siddiq, M.;Sinha, N.K.;Cash, J.N.;Hanum, T.
  25. Biochem. Biophys. Res. Commun. v.70 Strothkamp, K.G.;Jolley, R.L.;Mason, H.S. https://doi.org/10.1016/0006-291X(76)91077-9
  26. Korean Biochem. J. (presently J. Biochem. Mol. Biol.) v.25 Sung, C.K.;Cho, S.H.
  27. Plant Physiol. v.48 Wong, T.C.;Luh, B.S.;Whitaker, J.R. https://doi.org/10.1104/pp.48.1.19
  28. J. Food Sci. v.43 Zenin, C.T.;Park, Y.K. https://doi.org/10.1111/j.1365-2621.1978.tb02379.x