Signal Transduction in Wound Pharmacology

  • Kim, Wiliam June-Hyun (Laboratory of Developmental biology and Repair, Room H-169, New York University Medical Center) ;
  • George K. Gittes (Laboratory of Developmental Biology and Repair) ;
  • Michael T. Longaker (laboratory of Developmental biology and Repair)
  • Published : 1998.10.01

Abstract

Gorwth factors such as TGF-beta, PDGF and FGF are thought to play important roles in wound healing. However, thier biological activity and signal transduction during wound repair remain poorly understood. Growth factors are often ligands for receptor tyrosine kinase and receptor serine/threonine kinases. With recent advances in signal transduction by receptor kinases, we are beginning to understand the underlying mechanism of how growth factors may regulate cutaneous wound repair. In this paper, we will describe the pharmacological effects of growth factors on wound healing, and dscuss the potential underlying signaing mechanisms. thus, we hope to provide the basis for designing more specific therapeutics for wound healing in the near future.

Keywords

References

  1. The Molecular and Cellular Biology of Wound Repair 2nd Ed. Modulation of wound repair by members of the fibroblast growth factor family Abraham;J.A.;Klagsbrun;M.In Clark;R.A.F.(ed.)
  2. Surgery v.11 PDGF and FGF reverse the healing impairment in protein-malnourshed diabetic mice Alberton;S.;Hummel;R.P.;Bresden;M.;Greenshalgh;D.G.
  3. EMBO J. v.17 Gelsolin is a downstream effector of rac for fibroblast motility Azuma;T.;Wrtke;W.;Stossel;T.P.;Hartwing;J.H.;Kwiatkowski;D.J.;
  4. Cell v.17 Cell migration is essential for sustained growth of kerotinocyte coconies:the roles of transforming growth factor-alpha and epidermal growth facter. Barrandon;Y;Green;H.
  5. J. Clin.Invest. One systemic administration of TGF-beta 1 reverse age-or glucocorticoidimpaired wound healing Beck;L.S.;Deguzman;L.;Lee;W.P.;Xu;Y.Siegel;M.W.;Ameto E.P.
  6. J. Cell Biol. v.121 A novel cytocseletal structure involved in purse string wound closure and cell polarity maintenance Bement;W.M.;Forscher;P.;Mooseker;M.S.
  7. Endocrine Reviews v.18 Biological role of fibroblast growth factor-2 Bikfalvi;A.;Klein;S.;Pintuci;C.;Rifkin;D.B.
  8. Proc. Natl. Acad. Sci. USA v.91 T lymphocytes synthesize and export heparin-binding epidermal growth factorlike growth factor and basic fibroblast gr Blotnick;S.Peoples;G.E.;Freeman;M.R.;Eberlein;T.J.;Klagbrun;M.
  9. Cell Motil.Cytoskel. v.35 Perfect wound healing in the keratin 8 deficient mouse embryo Brock;J.;McCluskey;J.;Baribault;H.;Martin;P.
  10. J.Cell.Biol. v.35 Healing of incisional wounds in the embryonic chick wing bud:characterization of the actin pursestring and demonstration of a requirement for Rho activation Brock;J.;Midwinter;K.;Lewis;J.;Martin;P.
  11. Plast. Reconstr. Surg. v.88 Stimulation of healing of chronic wounds by epidermal growth factor Brock;G.L.;Curtsinger;L.;Jurkiewicz;M.J.;Nahai;F.;Schultz;G.
  12. J. Exp. Med. v.163 Enhancement of epidermal regeneration by biosynthetic epidermal growth factor Brown;G.L.;Curtsinger;L.3d.;Brightwell;J.R.;Ackerman;D.M.;Tobin;G.R.;Polk;H.C.Jr.;Goerge-Nascimento;C.;Valenzuela;P.;Schultz;G.S.
  13. New Engl. J. Med. v.321 Enhancement of wound healing by topical treatment with epidermal growth facter Brown;G.L.;Nanney;L.B.;Griffen;J.;Cramer;A.B.;Yancey;J.M.;Curstinger;L.J.3d.;Holtzin;L.Schultz;G.S.;Jurkiewicz;M.J.;Lynch;J.B.
  14. J. Clin. Invest. v.89 Enhancement of incisional wound healing and neovascularization in normal rats by thrombin and synthenic thrombin receptor-activating peptides Carney;D.H.;Mann;R.;Redin;W.R.;Rernia;S.D.;Berry;D.;Heggars;J.P.;Hayward;P.G.;Robson;M.C.;Christies;J.;Annable;C.
  15. J.Boil.Chem. v.265 Epidermal groeth factor. Carpenter;G.;Cohen;S.
  16. J. Invest. Dermatol. v.99 Charaterization of biologic properties of wound fluid collected during early stage of wound healimg Chen;W.Y.;Rogers;A.A.;Lydon;M.J.
  17. The Molecular and Cellular Biology of Wound Repair;2nd Ed. Clark;R.A.F.(ed.)
  18. J. Dermatol. Surg. Oncol. v.19 Basics of cutaneous wound repair Clark;R.A.F.
  19. Syrgery v.113 Accelation of tissue repair by TGF-beta1:identification of in vivo mechanism of action with radiotherapy-included specific healing deficts Cromack;D.T.;Porras-Reyes;B.Purdy;J.A.;Pierce;G.F.;Mustoe;T.A.
  20. J.Clin.Invest. v.95 New differation factor upregulates epidermal migration and integrin expression in excisional wounds. Danielenko;D.M.;Ring;B.D.;Lu;J.Z.;Tarpley;J.E.;Chang;D.;Liu;N.;Wen;D.;Pierce;G.F.
  21. J .Cell. Biol. v.100 Accelerated wound repair;cell proliferarion;and collagen accumulation are produced by a catilagederived growth factor Davidson;J.M.;Klagsburn;M.Hill;K.E.;Buckley;A.;Sullivan;R.;Brewer;P.S.;Woodard;S.C.
  22. J. Cell Biol. v.122 Transforming growth factor-beta 1 induces lpha-smooth muscle actin expression in granelation tissue myofiblasts and in quiescent and growing cultured fibroblasts Desmouliere;A.;Geinoz;A.;Gabbiani;F.;Gabbiani;G.
  23. J. Cell.Biochem. v.45 Pierce;G.F.;Role of PDGF in wound healing Deuel;T.F.;Kawahara;R.;Mustoe;T.A.
  24. Embo J. v.11 PDGF alpha-and beta-receptors activate unique and common signal transduction pathways Eriksson;A.;Siegbahn;A.Westermark;B.;Helding;C.H.;Claesson-Welsh;L.
  25. J. Dermatol. Sugr. Oncol. v.18 Topical use of humn recombinant epidermal growth factor(h-EGF) in vwnous ulcers Falanga;V.Eaglstein;W.H.;Bucalo;B.Katz;M.H.;Harris;B.;Carson;P.
  26. EMBO J. v.16 MEKkinasws and regulated by EGF and selectively interact with Rac/cdc42 Fanger;G.R.;Johson;N.L.;Johnson;G.L.
  27. 4th Annual Metting of the European Tissue Repair Society Growth factors and antagonists:their role in wound healing in abstracts; Ferguson;M.W.J.
  28. J.Cell.Biol. v.109 Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat Ffrench-Constant;C.;Van de Water;H.F.;Dvorak;L.;Hynes;R.O.
  29. Scinece v.253 Protein tyrosine phosphatase:a diverse family of intracellular and transmembrance enzymes Fischer;E.H.;Charbommeau;H.;Tonks;N.K.
  30. J. Biol.Chem v.271 Transforming growth factors beta 1;beta 2 and beta 3 and their receptors are differentially regulated during normal and impaired wound healing Frank;S.;Madlener;M.;Werner;S.
  31. EMBO J. v.16 Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins Frost.J.A.;Steen;H.;Shapiro;P.;Lewis;T.;Ahn;N.;Shaw;P.E.;Cobb;M.H.
  32. J.Surg.Res. v.56 Basic fibroblast growth factor in the early human burn wound Gibran;N.S.;Isik;F.F.;Heimbach;D.M.;Gordon;D.
  33. Opthamology v.99 TGF-beta 2 for the treatment of full-thickness macular holes. A prospective randomized study Glaser;B.M.;Michels;R.G.;Kuppermann;B.D.;Siaarda;R.N.;Pena;R.A.
  34. Am. J. Pathol. v.136 PDGF and fgf Stimulate wound healing in the genetically diabetic mouse Greenhalgh;D.G.;Sprugel;K.H.;Merray;M.J.;Ross;R.
  35. J.Trauma. v.41 The role of growth factors in wound healing Greenhalgh;D.G.
  36. J.Cell.Sci. v.110 Fibronectin provides a conduir for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix Greiling;D.;Clark;R.A.F.
  37. J. Cell. Biol v.124 myofibroblasts;wound contraction Grinnell;F.;Fibroblasts
  38. Cell Growth Differ. v.7 A novel transforming growth factor gene Grotendorst;G.R.;Okochi;H.;Hayashi;N.
  39. Cell v.81 Gene targeting if BPAG1:abnormalities in mechanical strength and cell migration in strarified epithelia and neurologic degeneration Guo;L.;Degenstwin;L.;Dowling;J.; Yu;Q.C.;Wollmann;R.;Perman;B.;Fuchs;E.
  40. Science v.240 Two classes of PDGF receptor recognize defferent isoforms of PDGF Hart.C.E.;Forstom;J.W.;Kelly;J.D.;Seifert;R.A.;Smith;R.A.;Ross;R.;Murray;M.J.;Bowen Pope;D.F.
  41. Cell v.82 Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilixzed human platelets Hartwing;J.H.H.;Bokoch;G.M.;Carpenter;C.L.;Janmey;P.A.;Taylor;L.A.;Toker;A.;Stossel;T.P.
  42. The Molecular and Cellular Biology of Wound Repair;2 Ed Heldin;C.H.;Westermark;B.;Role of PDGF in vivo;In Clark;R.A.F.(ed.)
  43. J. Invest. Dermato. v.104 Integrin expression by human epodrmal keratinocytes can be modulated by interferon-gamma;transformimg growth factorbeta;tumor necrosis factor-alpha;and culture on a dermal equivalent Hertle;M.D.;Jones;P.H.;Groves;R.W.;Hudson;D.L.;Watt;F.M.
  44. J. Cell Sci. v.107 Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. Hopkinson-Woolley;J.Hughes;D.;Gordon;S.;Martin;P.
  45. Dev. Biol. v.173 Strong induction of activin expression after injury suggests an omportant role of activin in wound repair Hubner;G.;Hu;Q.;Smola;H.;Werner;S.
  46. J. Biol.Chem v.261 TGF-beta srimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix Ignotz;R.A.;Massague;J.
  47. Studies on protein tyrosine phosphatases in growth factorreceptor signal transduction.Ph.D.thesis;New York University Kim;W.J.H.
  48. Curr. Opin. Genet. Dev. mediaiors and regulators of TGF-beta signaling Kretzschmar;M.;Massage;J.;SMADs:
  49. Ann. Sugr. v.211 Exogenous TGF-beta 2 enhances connective tissue formation and wound strength in guinea pig dermal wounds healing by secondary intent Ksander;G.A.;Ogawa;Y.;Chu;G.H.;McMullin;H.;Rosenblatt;J.S.;McPherson;J.M.
  50. Surg. Forum v.43 The effect of IL-1 beta on the inhibition of concentration of excisional wounds caused by bacterial contamination Kucukcelebi;A.Hui;P.S.;Sahar;K.
  51. Arch. Dermotol. Res. v.284 Immunohistochemical localization of basic fibroblast growth factor in wound healing sites of mouse skin Kurita;Y.;Tsuboi;R.;Ueki;R.;R..ifkin;D.B.;Ogawa;H.
  52. Growth Factor v.8 Dose responces effecrts of PDGF-88;PDGFAA EGF;bFGF on granulation tissue in a guinera pig partial thickness skin excision model. Legrand;E.K.;Burke;J.K.;Costa;D.E.;Kiorpes;T.C.;
  53. Am. J. Pathol. v.143 Spatial and temporal patterns of immumoreactive transforming growth factor beta 1;beta 2 and beta 3 during wxcisional wound repair. Levine;J.H.;Moses;H.L.;Gold;L.I.;Nanney;L.B.
  54. Mol. Cell. Biol. v.14 A new function for a phosphotyrosine phosphatase:linking GRB2-Sos to a receptor tyrosine kinase Li;W.;Nishimura;R.Kashishian;A.;Batzer;A.G.;Kim;W.J.;Cooper;J.A;Schlessinger
  55. J Cell Biol. v.122 Decreased level of PDGF stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices Lin;Y.C.;Grinnell;F.
  56. Recent. Prog. Horm. Res. Novel mechanisms of fibroblast growth factor I function Maclag;T.;Zhan;X.;Garfinkel;S.;Ffiedman;S.;Prudovsky;I.;Jackson;A/;Wessendorf;J.;Hu;X.;Gamble;S.;Shi;J.;
  57. Biomed. J. v.320 Regulation of the expression of stromelysin-2 by growth factors in keratinocytes:implications for normal and impaired wound healing Madlener;M.;Mauch;C.;Conca;W.;Brauchle;M.;Parks;W.C.;Werner;S.
  58. J. Biomed. Mater. Res. v.320 Effects of fibroblasts and basic fibroblast growyh factor on facilitatiom of dermal wound healing by type I collagen matrics Marks;M.G.;Doillon;S.;ilver;F.H.
  59. Biomed. J. v.320 Regulation of the expression of stromelysin-2 by growth factors in keratinocytes:implications for normal and impaired wound healing Madlener;M.;Mauch;C.;Conca;W.;Brauchle;M.;Parks;W.C.;Werner;S.
  60. Dev. Genet. v.14 Actin cables and epidermal movement in embryonic wound healing Martin;P.;Dickson;M.C.;Millan;F.A.;Akhurst.;R.J.
  61. Science v.276 Wound healing-aiming for perfect skin regeneration Martin;P.
  62. Curr. Opin.Genet. Dev. v.5 Mammalian antiproliferative signals and their targets Martin;P.;Lewis;J.
  63. Cancer Surv. v.27 Serine/threonine kinase receptors:mediators of TGF beta femily signals Massague;J.;Weis-Garcia;F.
  64. Cell v.28 TGF beta signaling:receptors;transducers;and Mad proteins Massague;J.
  65. Am. J. Pathol. v.149 Mesenchymal cell activation is the rate-limiting steo of granulation tissue induction McClain;S.A.;Simon;M.Jones;E.;Nandi;A.;Gailit;J.O.;Tonnesen;M.G.;Newman;D.;Clark.R.A.
  66. Science v.45 Wound healing-aiming for perfect skin regeneration McGee;G.S.;Davidson;J.M.;Beckley;A.;Sommer;A.;Woodward;S.C.;Aquino;A.M.;Barbour;R.;Demetriou;A.A.
  67. Dev. Biol. v.170 Analysis of the tissue movements of embryonic would healing-Dil studies in the limb bud stage nouse embryo McGluskey;J.;Martin;P.
  68. Proc. Natl. Acad. Sci. USA v.83 Basic fibroblast growth factor induces angiogenesis in vitro Montesano;R.;Vassalli;J-D.;Baired;A.;Guillimin;R.;Orci;L.
  69. J. Clin. Invest. v.87 Growth factor induced accelaration of tissue repair through direct and inductive activities Mustoe;T.A.;Pierce;G.F.;Morishima;C.Deuel;T.F.
  70. Science v.347 Accelarated healing of incisional wounds in rats induced by transforming growth factor type beta McGee;G.S.;Davidson;J.M.;Beckley;A.;Sommer;A.;Woodward;S.C.;Aquino;A.M.;Barbour;R.;Demetriou;A.A.
  71. Am. J. Surg. v.158 Reversal of impaired wound healing irradiated rats by PDGF-BB:requiremeny of an active bone marrow Mustoe;T.A.;Purdy;J.;Gramates;P.;Deuel;T.F.;Thomason;A.;Pierce;G.F.
  72. The Molecular and Cellular Biology of Wound Repair;2nd Ed. v.149 Epodermal growth factor and transforming growth factor-alpha;In Clark;R.A.F.(ed.) Nanney;L.B.;King;L.E.
  73. Nature v.315 Stimulation of connective tissue cell growth by substance P and substrance K. Nilson;J.;Von Euler;A.;Dalsgaard;C.J.
  74. Biomaterials v.18 Polypeptide growth factors:targeted delivery systems. Nimni;M.E.
  75. Cell v.81 Rho;rac;and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers;lamellipodia;and filopodia Nobes;C.D.;Hall;A.
  76. J.Cell Biol. v.132 Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes:defining a potential role for keratin 16 Paladini;R.D.;Takahashi;K.;Bravo;N.S.;Coulombe;P.A.
  77. Nature v.373 Protein modules and signaling networks Pawson;T.
  78. Ann. Plast. Surg. v.31 Application of basic fibroblast growth factor may reverse diabestic wound healing impairment.Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes:defining a potential role for keratin 16 Phillips;J.G.;Abdullah;K.M.;Geldner;P.D.;Dobbins;S.;Ko;F.;Linares;H.A.;Broemeling;L.D.;Robson;W.C.
  79. J.Cell Biol. v.109 PDGF and TGF-beta enhence tissue repair activities by unique mechanisms Pierce;G.F.;Mustoe;T.A.;Lingelbach;J.;Masakowski;V.R.;Griffin;G.L.;Senior;R.M.;Deuel;T.F.
  80. Ann. Rev. Med. v.46 Pharmacologic enhancement of wound healing Pierce;G.F.;Mustoe;T.A.
  81. Am. J. Pathol. v.145 Tissue repair processes in chronic pressure ulcers treated with recombinant PDGF-BB. Pierce;G.F.;Tarpley J.E.;Allman;R.M.;Goode;P.S.;Serder;C.M.;Morris;B.;Mustoe;T.A.;Vande Berg;J.
  82. J. Clin. Invest. v.87 Growth factor induced accelaration of tissue repair through direct and inductive activities Mustoe;T.A.;Pierce;G.F.;Morishima;C.Deuel;T.F.
  83. The Molecular and Cellular Biology of Wound Repair;2nd Ed. Epodermal growth factor and transforming growth factor-alpha;In Clark;R.A.F.(ed.) Nanney;L.B.;King;L.E.
  84. Nature v.315 Stimulation of connective tissue cell growth by substance P and substrance K. Nilson;J.;Von Euler;A.;Dalsgaard;C.J.
  85. Biomaterials v.18 Polypeptide growth factors:targeted delivery systems. Nimni;M.E.
  86. Cell v.81 Rho;rac;and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers;lamellipodia;and filopodia Nobes;C.D.;Hall;A.
  87. J.Cell Biol. v.132 Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes:defining a potential role for keratin 16 Paladini;R.D.;Takahashi;K.;Bravo;N.S.;Coulombe;P.A.
  88. Nature v.373 Protein modules and signaling networks Pawson;T.
  89. Ann. Plast. Surg. v.31 Application of basic fibroblast growth factor may reverse diabestic wound healing impairment.Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes:defining a potential role for keratin 16 Phillips;J.G.;Abdullah;K.M.;Geldner;P.D.;Dobbins;S.;Ko;F.;Linares;H.A.;Broemeling;L.D.;Robson;W.C.
  90. Ann. Plast. Surg. v.109 PDGF and TGF-beta enhence tissue repair activities by unique mechanisms Pierce;G.F.;Mustoe;T.A.;Lingelbach;J.;Masakowski;V.R.;Griffin;G.L.;Senior;R.M.;Deuel;T.F.
  91. Ann. Rev. Med. v.46 Pharmacologic enhancement of wound healing Pierce;G.F.;Mustoe;T.A.
  92. Am. J. Pathol. v.145 Tissue repair processes in chronic pressure ulcers treated with recombinant PDGF-BB. Pierce;G.F.;Tarpley J.E.;Allman;R.M.;Goode;P.S.;Serder;C.M.;Morris;B.;Mustoe;T.A.;Vande Berg;J.
  93. J. Clin. Invest. v.96 Detection of increased levlels pf PDGF in chronic nonhealing wounds Pierce;G.F.;Tarpley J.E.;Tseng;J.;Bready;J.;Chang;D.;Kenney;W.C.;Rudolph;R.Robson;M.C.;Vande Berg;J.;Reid;P.
  94. Am. J. Pathol. v.140 PDGF-BB;TGF-beta 1;and basic FGF in dermal wound healing:neovessel and matrix formation and cessation of repair Pierce;G.F.;Tarpley J.E.;Yanagihara;D.;Mustoe;T.A.;Fox;G.M.;Thomason;A..
  95. Am. J. Pathol. v.140 PDGF-BB;TGF-beta 1;and basic FGF in dermal wound healing:neovessel and matrix formation and cessation of repair Pierce;G.F.;Tarpley J.E.;Yanagihara;D.;Mustoe;T.A.;Fox;G.M.;Thomason;A..
  96. J. Exp. Med. v.179 Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor Pierce;G.F.;Yanagihara;D.;Klopchin;K.;Danilenko;D.M.;Hsu;E.;Kenny;W.C.;Morris;C.F.
  97. Lab. Invest. v.63 TGF-beta stimulates wound healing and modulates extracellular matrix gene expression on pig skin. I. Excisional wound model Quaglino;D.Jr.;Nanney;L.B.;Kennedy;R.;Davidson;J.M.
  98. Mol. Cell. Biol. v.15 Regulation of sactter facter/hepatocyte growth factor responses by Res;Rac;and Rho in MDCK cells Ridley;A.J.;Comogio;P.M.;Hall;A.
  99. The Molecular and Cellular Biology of Wound Repair;2nd Ed. Transforming growth factor-bata;In Clark;R. A. F.(ed.). Roberts;A.B.;Sporn;M.B.
  100. Ann. Surg. v.216 The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores Robson;M.C.;Phillips;L.G.;Lawence;W.T.;Bishop;J.B.;Youngerman;J.S.;Hayward;P.G.;Broemeling;L.D.;Heggars;J.P.
  101. Neuron v.9 Growth factor signaling by receptor tyrosin kinases Schlessinger;J.;Ullrich;A.
  102. Cell v.83 Regulation of growth factor activation by proteoglycans:what is the role of the low affinity receptors? Schlessinger;J.;Lax;I.;Lemmon;.M.
  103. Cell v.91 Direct binding and activation of receptor tyrosine linases by collagen Schlessinger;J.
  104. Cell v.83 Regulation of growth factor activation by proteoglycans:what is the role of the low affinity receptors? Schlessinger;J.;Lax;I.;Lemmon;.M.
  105. J. Pathol v.171 TGF-betas and TGF-beta type Ⅱ receptor ib human epidermis:differential expression in acute and chronic skin wounds Schumid;P.;Cox;D.;Billbe;G.;McMasrer;G.;Morrison;C.;Stahelin;H.;Luscher;N.;Seiler;W.
  106. Biochem. Biosys. Res. Commun. v.194 Injury induced expression of TGF-beta 1 mRNA is enhanced by exogenously applied TGF-beta Schumid;P.;,Kunz;S.Cerletti;N.;McMasrer;G.;Cox;D.
  107. Science v.235 Epithelial wound healing evnhanced by transforming growth factor-alpha and vaccina growth factor Schultz;G.S.;White;M.;Mitchell;R.;Brown;G.;Lynch;J.;Twardik;D.R.;Todaro;G,J,
  108. Lancet v.339 Control of scarring in adult wounds bt neutralizing antibody to TGF-beta Shah;M.;Foreman;D.M.;Ferguson;M.W.
  109. J. Cell Sci. v.108 Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous tar wounds reduces scarring Shah;M.;Foreman;D.M.;Ferguson;M.W.
  110. J. Cell Sci. v.108 Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous tar wounds reduces scarring Shah;M.;Foreman;D.M.;Ferguson;M.W.
  111. Br. J. Surg. v.79 Recombinant basic FGF in red blood cell ghosts accelerates incisional wound healing Slavin;J.;Hunt;J.A.;Nash;J.R.;Williams;D.F.;Kingsnorth;A.N.
  112. Cell v.79 Heparin-induced oligomerization or FGF molecules is responsible for FGF receptor dimerization;activation;and cell pro;liferation Spivak-Kroizman;T.;Lemmon;M.A.;Dikic;I.;Ladbury;J.E.;Pinchasi;D.;Hung;J.;Jaye;M.;Crumley;G.;Schlessinger;J.;Lax;I,
  113. J. Clin. Invest. v.92 A major advance in the use of growth factors to enhance wound healing Sporn M.B.;Roberts;A.B.
  114. J. Surg. Res. v.50 Effect of bFGF on the inhibition of contraction caused by bacteria Stenberg;B.D.;Phillips;L.G.;Hokanson;J.A.;Heggers;J.P.;M.C.Robson;M.C.
  115. J. exp. Med. v.2273 Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/bd mice Tsuboi;R.;Rifkin;D.B.
  116. J. Invest. Dermatol v.101 Keratinocyte growth factor (FGF-7) stimulates migration and plasminigen activator activiy of normal human keratinocytes Tsuboi;R.;Sato;C.;Kurota;Y.;Ron;D.;Rubin;J.S.;Ogawa;H.
  117. J. Dermatol v.19 Keratinocyte growth factor (FGF-7) stimulates migration and plasminigen activator activity of normal human keratinocytes Tsuboi;R.;Shi;C.M.;Rifkin;D.B.;Ogawa;H.A.
  118. Proc. Natl. Acad. Sci. USA v.89 Large induction of kerationcyte ggroeth factor expression in thedermis during wound healing Werner;S.;Peters K.G.;Longaker;M.T.;Fuller-Pace;F.;Banda;M.J.;Williams;L.T.
  119. Science v.266 The function of KGF in morphogenesis of epithelium and reepithelialization of wounds Werner;S.;Smola;H.;Liao;S.;Longaker;M.T.;Krieg;T.;Hofschneider;P.H.;Williams;L.T.
  120. Cell v.81 Hemostatic;inflammatory;and fibreblast responses are blunted in mice lacking gelsolin Witke;W,;Shape;A.H.;Hartwing;J.H.;Azuma;T.;Stossel;T.P.;Kwiatkowski;D.J.
  121. Med about SMADs Nature v.388 Signal transduction. Wrana;J.Pawson;T.
  122. Nature v.370 Mechanism of activation of the TGF-bera receptor Wrana;J.L.;Attisano;L.;Wieser;R.;Ventura;F.;Massague;J.
  123. J.Cell Biol. v.132 Extracellular matrix alters PDGF regulation of fibroblast integrins Xu;J.;Clark;R. A. F.
  124. Genes Dev. v.9 Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate Zhou;P.;Byrne;C.;Jacobs;J.;Fuchs;E.