Interaction of Co/Nb Bilayer with $SiO_2$ Substrate

$SiO_2$와 Co/Nb 이중층 구조의 상호반응

  • Gwon, Yeong-Jae (Department of Metallurgical Engineering, Inha University) ;
  • Lee, Jong-Mu (Department of Metallurgical Engineering, Inha University) ;
  • Bae, Dae-Rok (LS Process Development Semiconductor R&D Center, Samsung Electronics) ;
  • Gang, Ho-Gyu (LS Process Development Semiconductor R&D Center, Samsung Electronics)
  • 권영재 (인하대학교 금속공학과) ;
  • 이종무 (인하대학교 금속공학과) ;
  • 배대록 (삼성전자 반도체연구소 LS 공정개발) ;
  • 강호규 (삼성전자 반도체연구소 LS 공정개발)
  • Published : 1998.10.01

Abstract

The interfacial reaction between the CoINb bilayer and the $SiO_2$ substrate in the temperature range of $330^{\circ}C$-$800^{\circ}C$ in a vacuum has been investigated by X-ray photoelectron spectroscopy, glancing angle XRD, Auger Electron Spectroscopy and Atomic force microscopy. The Co and Nb were actively interdiffused at $600^{\circ}C$, and the layer inversion completed at $700^{\circ}C$. NbO was formed by interfacial reaction between the Nb interlayer and the $SiO_2$ substrate, while $Nb_20_5$ was formed on the surface by reaction of Nb with oxygen in the ambients. Free Si atoms obtained by the reaction between Nb and $SiO_2$ formed silicides like CoSi and $Nb_5Si_3$ by reacting with Co and Nb remnants. The sheet resistance of the Co/Nb bilayer increased substantially after annealing at $800^{\circ}C$. which is due to the agglomeration of the Co layer to reduce its surface energy.

XPS와 glancing angle XRD, AES 및 AFM을 사용하여 $330^{\circ}C$-$800^{\circ}C$사이의 진공분위기에서 열처리할 때, Co/Nb이중층과 $SiO_2$기판 사이의 계면반응을 조사하였다. $600^{\circ}C$에서 Co와 Nb는 서로 활발하게 확산하여, $700^{\circ}C$이상에서는 두 층사이의 충역전이 완전히 일어났다. 그 때 Nb 중간층과 $SiO_2$기판 사이의 반응에 의하여 계면에 일부 NbO가 형성되었으며, 표면에서는 분위기 중의 산소에 의하여 $Nb_2O_5$가 생성되었다. Nb와 기판간의 반응에 의하여 유리된 Si는 $600^{\circ}C$이상에서 잔류 Co 및 Nb와 반응하여 실리사이드를 형성하였다. Co/Nb 이중층 구조는 $800^{\circ}C$에서 열처리한 후 면저항이 급증하기 시작하였는데, 이것은 Co층이 기판과 바로 접하게 되어 계면에너지를 줄이기 위해 응집되기 때문이다.

Keywords

References

  1. IEDM Tech. Dig. C.K.Lau;Y.C.Yee;D.B.Scott;J.M.Bridges;S.M.Perma;R.D.Davis
  2. J. Appl. Phys. v.52 no.8 M.Y.Tsai;F.M.d'Heurle;C.S.Petterson;R.W.Johnson
  3. IEEE Electron Devices v.ED-34 K.K.Ng;W.T.Lynch
  4. IEEE Trans. Electron Devices v.38 J.B.Lasky;J.S.Nakos;O.J.Kain;P.J.Geiss
  5. The Electrochem. Soc. Ext. Abs. v.89-1 S.J.Hillenius;H.I.Cong;J.Lebowitz;J.M.Andrews;R.L.Field;L.Manchanda;W.S.Lindenberger;D.M.Boulin;W.T.Lynch
  6. IEDM Tech. Dig. M.El-Diwany;J.Borland;J.Chen;S.Hu;P.V.Wijnen;C.Vorst;V.Akylas;M.Brassington;R.Razuok
  7. Appl. Phys. Lett. v.58 no.12 M.L.A.Dass;D.B.Fraser;C.S.Wei
  8. Ph. D. Thesis,서울대학교 무기재료공학과 Jeong Soo Byun
  9. J. Appl. Phys. v.64 A.E.Morgan;E.K.Broadbent;K.N.Ritz;D.K.Sadana;B.J.Burow
  10. IEEE Trans. Elec. Dev. v.ED-38 N.S.Parekh;H.Roede;A.A.Bos;A.G.M.Jonkers;R.D.J.Verhaar
  11. J. Electrochem. Soc. v.131 C.Y.Ting;M.Wittmer;S.S.Iyer;S.B.Brodsky
  12. J. Appl. Phys. v.63 G.J.P.Krooshof;F.H.P.M.Habraken;W.F.van der Weg;L.Van den hove;K.Maex;R.F. De Keersmaecker
  13. Mater. Res. Soc. Symp. Proc. v.260 J.Donnelly;N.Bryn;R.Pantel;P.Normandon
  14. Ph. D. Thesis, University of Leuven L.Van den hove
  15. Handbook of Inorganic Chemistry, Cobalt, Chemie. v.A L.Gmelin
  16. Inha Univ. internal report C.Lee
  17. J. App. Phys. v.67 no.6 S.Q.Wang;J.W.Mayer
  18. Thin Solid Films v.286 Z.L.Zhang;Z.G.Xiao;G.W.Tu
  19. J. Vac. Sci. Technol. v.B9 no.3 J.P.W.B.Duchateau;A.E.T.Kuiper;M.F.C.Willemsen;A.Torrisi;G.J.van der Kolk