DOI QR코드

DOI QR Code

A Theoretical Study on Vibrational Predissociation Rates of Ne-$I_2$

  • Published : 1998.05.20

Abstract

A new theoretical method, named the SCF-DWB-IOS approximation, is suggested to investigate the vibrational predissociation of triatomic van der Waals complexes. The meta stable vibrational excited states are described with SCF (self-consistent-field) approximation and the fragmented diatomic continuum states are determined by using IOS (infinite order sudden) approximation. The dissociation process itself is studied by using DWB (distorted wave Born) approximation. As a test case, the predissociation rates, rotational state distributions of products, and the lifetimes of vibrationally excited states of $Ne-I_2$ are all computed which are in reasonable agreements with other theoretical and/or experimental results. The suggested SCF-DWB-IOS approximation scheme is found to be a very simple but efficient theoretical tool to investigate the vibrational predissociation dynamics of small van der Waals complexes.

Keywords

References

  1. Acc. Chem. Res. v.19 Bowman, J. M.
  2. J. Phys. Chem. v.92 Gerber, R. B.;Ratner, M. A.
  3. Faraday Discuss v.97 Gray, S. K.
  4. Ann. Rev. Phys. Chem. v.40 Bacic, Z.;Light, J. C.
  5. Chem. Phys. Lett. v.75 Thomson, T. C.;Truhlar, D. G.
  6. Adv. Chem. Phys. v.60 Janda, K.
  7. J. Phys. Chem. v.90 Miller, R. E.
  8. Ann. Rev. Phys. Chem. v.41 Hutson, J. M.
  9. Adv. Chem. Phys. v.42 Le Roy, R. J.;Carley, J. S.
  10. Ann. Rev. Phys. Chem. v.45 Gerber, R. B.McCoy, A. B.;Garcia-Vela, A.
  11. Adv. Chem. Phys. v.47 Levy, D. H.
  12. Adv. Chem. Phys. v.60 Balint-Kurti, G. G.;Shapiro, M.
  13. J. Chem. Phys. v.98 Lipkin, N.;Moiseyev, N.;Leforestier, C.
  14. J. Chem. Phys. v.68 Smalley, R. E.;Wharton, L.;Levy, D. H.
  15. J. Chem. Phys. v.96 Zhang, D. H.;Zhang, J. Z.
  16. J. Chem. PHys. v.68 Beswick, J. A.;Jortner, J.
  17. J. Chem. Phys. v.102 Fang, J-Y.;Guo, H.
  18. J. Chem. Phys. v.85 Bacic, Z.;Light, J. C.
  19. J. Chem. Phys. v.82 Light, J. C.;Hamilton, I. P.;Lill, J. V.
  20. J. Phys. Chem. v.90 Ratmer, M. A.;Gerber, R. B.
  21. J. Chem. Phys. v.91 Horn, T. R.;Gerber, R. B.;Ratner, M. A.
  22. J. Chem. Phys. v.88 Schatz, G. C.;Gerber, R. B.;Ratner, M. A.
  23. Science v.257 Neuhauer, D.;Judson, R. S.;Doury, D. J.;Adelman, O. E.;Shafer, N. E.;Kliner, A. V.;Zare, R.
  24. Science v.260 Manopolous, D. E.;Stark, K.;Werner, H.-Y.;Arnold, D. W.;Bradforth, S. E.;Neumark, S. M.
  25. J. Chem. Phys. v.94 Gray, S. K.;Wozny, C. E.
  26. J. Chem. Phys. v.92 Waterland, R. L.;Lester, M. I.;Halberstadt, N.
  27. Bull. Korean Chem. Soc. v.17 Seong, J.;Sun, H.
  28. J. Chem. Phys. v.89 Waterland, R. L.;Skene, J. M.;Lester, M. I.
  29. J. Chem. Phys. v.78 Beswick, J. A.;Delgado-Barrio, G.
  30. J. Chem. Phys. v.97 Gutmann, M.;Willberg, D. M.;Zewail, A. H.
  31. J. Phys. Chem. Seong, J.;Sun, H.;Ratner, M. A.;Schatz, G. C.;Gerber, R. B.
  32. J. Chem. Phys. v.96 Willberg, D. M.;Gutamann, M.;Breen, J. J.;Zewail, A. H.
  33. J. Chem. Phys. v.104 Garcia-Velar, A.
  34. J. Chem. Phys. v.72 Blazy, J. A.;DeKoven, B. M.;Rusell, T. D.;Levy, D. H.