Shear Strength of the ${Cu_6}{Sn_5}$-dispersed Sn-Pb Solder Bumps Fabricated by Screen Printing Process

${Cu_6}{Sn_5}$를 분산시켜 스크린 프린팅법으로 제조한 Sn-Pb 솔더범프의 전단강도

  • Choe, Jin-Won (Dept.of Merallurgy and Materials Science, Hong Ik University) ;
  • Lee, Gwang-Eung (Dept.of Merallurgy and Materials Science, Hong Ik University) ;
  • Cha, Ho-Seop (Dept.of Merallurgy and Materials Science, Hong Ik University) ;
  • O, Tae-Seong (Dept.of Merallurgy and Materials Science, Hong Ik University)
  • 최진원 (홍익대학교 공과대학 금속·재료공학과) ;
  • 이광응 (홍익대학교 공과대학 금속·재료공학과) ;
  • 차호섭 (홍익대학교 공과대학 금속·재료공학과) ;
  • 오태성 (홍익대학교 공과대학 금속·재료공학과)
  • Published : 2000.12.01

Abstract

Cu$_{6}$Sn$_{5}$-dispersed 63Sn-37Pb solder bumps of 760$\mu\textrm{m}$ size were fabricated on Au(0.5$\mu\textrm{m}$)/Ni(5$\mu\textrm{m}$)/Cu(27$\pm$20$\mu\textrm{m}$) BGA substrates by screen printing process, and their shear strength were characterized with variations of dwell time at reflow peak temperature and aging time at 15$0^{\circ}C$ . With dwell time of 30 seconds at reflow peak temperature, the solder bumps with Cu$_{6}$Sn$_{5}$ dispersion exhibited higher shear strength than the value of the 63Sn-37Pb solder bump. With increasing the dwell time longer than 60 seconds, however the shear strength of the Cu$_{6}$Sn$_{5}$-dispersed solder bumps became lower than that the 63Sn-37Pb solder bumps. The failure surface of the solder bumps could be divided into two legions of slow crack propagation and critical crack propagation. The shear strength of the solder bumps was inversely proportional to the slow crack propagation length, regardless of the dwell time at peak temperature, aging time at 150 $^{\circ}C$ and the volume fraction of Cu$_{6}$Sn$_{5}$ dispersion.> 5/ dispersion.

63Sn-37Pb에 Cu$_{6}$Sn$_{5}$를 분산시킨 760$\mu\textrm{m}$크기의 솔더범프를 Au(0.5$\mu\textrm{m}$)/Ni(5$\mu\textrm{m}$)/Cu(27$\pm$20$\mu\textrm{m}$) BGA 기판에 스크린)/Ni(5im)/Cu(27:201m) B3GA 기판에 스크린 프린팅법으로 제조하여, 리플로우 피크온도 유지시간, 15$0^{\circ}C$ 시효처리 시간에 따른 전단강도를 분석하였다. Cu$_{6}$Sn$_{5}$를 첨가한 솔더범프는 피크온도에서 30초간 유지시에는 63Sn-37Pb 솔더범프보다 높은 전단강도를 나타내었으나, 피크온도 유지시간을 60초 이상으로 증가시킴에 따라 전단강도가 63Sn-37Pb 솔더범프보다 저하하였다. 전단시험 후 솔더범프의 파단면은 초기에 전단 균열의 점진적인 전파에 의해 발생된 파괴부위와 점진적 균열전파에 의한 면적 감소로 솔더범프가 급격히 떨어져 나가면서 발생한 파괴부위로 구분할 수 있었다 피크온도 유지시간, 15$0^{\circ}C$ 시효처리 시간 및 Cu$_{6}$Sn$_{5}$ 첨가량에 무관하게 점진적 파괴모드에 의한 균열 전파길이가 증가할수록 솔더범프의 전단강도가 감소하였다.감소하였다.

Keywords

References

  1. Chip Scale Rev. v.1 T.H. Distefano
  2. J. Electron. Mater. v.28 S. Choi;T.R. Bieler;J.P. Lucas;K.N. Subramanian
  3. J. Electron. Mater. v.28 W.K. Choi;H.M. Lee
  4. J. Appl. Phys. v.86 A.S. Zuruki;C.H. Chiu;S.K. Laihiri
  5. Proc. Symp. Microelectronics J.H. Lau;S.W. Lee;C. Ouyang
  6. Proc.Conf. Electron. Comp. Technol. S. Wiesse;F. Feustel;S. Rzepka;E. Meusel
  7. J. Electron. Mater. v.26 R.C. Reno;M.J. Panunto;B.H. Piekarski
  8. Scripta Metall v.25 H.S. Betrabet;S.M. McGee;J.K. McKinlay
  9. Proc. 41st Electronic Comp. Technol. Conf. J.L. Marshall;G. Kucey;J. Hwang
  10. Proc. Technical Program NEPCON West S.M.L. Sastry;T.C. Peng;R.J. Lederich;K.L. Jerina;C.G. Kuo
  11. Soldering Surface Mounting Technol. v.26 J.L. Marshall;J. Calderon
  12. Proc. Symp. Microelectronics J. Kloeser;P. Coskina;E. Jung;A. Ostmann;R. Aschenbrenner;H. Reichl
  13. Proc. Symp. Microelectronics A.J.G. Strandjord;S.F. Popelar;C.A. Erickson
  14. IEEE/CPMT Int. Electronic Manuf. Technol. Symp. M. Howarth;S.A. Silvester;M. Lacey;K. Sivaygonathan
  15. Solder Paste in Electronics Packaging J.S. Hwang
  16. IEEE/CPMT Int. Electron. Manuf. Technol. Symp. S.C. Hung;P.J. Zheng;S.C. Lee;J.J. Lee
  17. Adv. Elec. Packaging v.2 J.W. Morris;H.L. Reynolds
  18. IEEE Trans. CPMT v.20A M.J. Haji-Sheikh;D. Ulz;M. Cambell
  19. Reliability of Plastic Ball Grid Array Assembly in Ball Grid Array Technology R. Darveaux;K. Banerji;A. Mawer;G. Dody;J.H. Lau(ed.)
  20. IEEE/CPMT Int. Electronic Manuf. Technol. Symp. R. Erich;R.J. Coyle;G.M. Wenger;A. Primavera
  21. The Mechanics of Solder Alloy Interconnects D.R. Frear;S.N. Burchett;H.S. Morgan;J.H. Lau
  22. Reliability of Plastic Ball Grid Array Assembly in Ball Grid Array Technology R. Darveaux;K. Banerji;A. Mawer;G. Dody;J.H. Lau(ed.)
  23. Met. Trans. v.A16 R.O. Ritchie;A.W. Thompson