양자 교환된 리튬나오베이트를 이용한 광 픽업용 λ/2 파장판 제작

Fabrication of λ/2 Phase Plates for Optical Pickup Using a Proton Exchanged LiNbO$_{3}$

  • 손경락 (경북대학교 전자전기공학부) ;
  • 김광택 (경북대학교 전자전기공학부) ;
  • 김영조 (경북대학교 전자전기공학부) ;
  • 송재원 (경북대학교 전자전기공학부) ;
  • 박경찬 (LG 전자 디지털미디어연구소) ;
  • 김진용 (LG 전자 디지털미디어연구소)
  • Son, Gyeong-Rak (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Kim, Gwang-Taek (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Kim, Yeong-Jo (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Song, Jae-Won (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Park, Gyeong-Chan (The Digital Media Research Center of LG Electronics) ;
  • Kim, Jin-Yong (The Digital Media Research Center of LG Electronics)
  • 발행 : 2000.04.01

초록

본 논문에서는 리튬나오베이트 기판 상에 벤젠산으로 양자 교환 후 습식 식각하는 방법을 이용하여 청색레이저 다이오드를 광원으로 사용하고자 하는 광 픽업을 위한 λ/2 파장판을 제작하였으며 소자의 기능과 제작과정에 대해서 상세히 서술하였다. 그리고, 소자제작을 위한 최적의 조건을 실험을 통하여 확립하였다. 제작된 소자의 위상 특성은 광학계로 마하젠더 간섭계를 구성하여 파장이 632.8nm인 헬륨-네온 레이저로 측정하였다. 측정 결과 위상오차는 +5°∼6°(3% 이내)로 측정되었다. 본 연구에서 제작한 파장판은 청색 레이저 다이오드를 광원으로 사용하는 광 픽업 시스템의 해상도와 안정도를 향상시키는 유용한 소자로 응용될수 있다.

In this paper, we have been fabricated λ/2 phase plates lot an optical pick-up using a blue violet laser diode by employing proton exchange and wet etching in LiNbO$_{3}$. Their functions and fabrication processes are described in detail. It is established the optimal fabrication conditions through the experimental results. The device characteristics are measured by the Mach-zender interferometer which is composed of the optical components and 632.8nm He-Ne laser. The measured phase error was +5$^{\circ}$~ -6$^{\circ}$(within 3%). This phase plate could be applied an useful device to improve the resolution and the stability of the optical pick-up which has a blue violet laser diode as an optical source.

키워드

참고문헌

  1. K. C. Park, H. N. Kim, S. Y. Jung, S. K. Ahn, T. S. Lee, S. W. Lee, D. C. Lee, and J. Y. Kim, 'High density optical disc readout using a blue violet laser diode,' in Joint ISOM and ODS 1999, SPIE, vol. 3864, Postdeadline paper TuD27, 1999
  2. K. Osata, G. S. Kino, and S. Kubota, 'Electro-optic focusing system for a high-density optical disk,' Opt. Lett., vol. 18, no. 15, pp. 1244-1246, August, 1993
  3. Y. Yamanaka, Y. Hirose, H. Fijii, and K. Kubota, 'High density recording by superresolution in an optical disk memory system,' Appl. Opt., vol 29, no. 20, pp. 3046-3051, July, 1990
  4. G. Yang, 'An optical pickup using a diffractive optical element for a high density optical disc,' Opt. Commun., 159, pp. 19-22, January, 1999 https://doi.org/10.1016/S0030-4018(98)00582-3
  5. LG Electronics, Patent pending
  6. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, and E. Dieguez, 'Hydrogen in lithium niobate,' Advances in Physics, vol. 34, no. 5, pp. 349-392, January, 1996 https://doi.org/10.1080/00018739600101517
  7. F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, 'Wet etching of proton-exchange lithium niobate -A novel processing technique,' J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, November, 1992 https://doi.org/10.1109/50.184899
  8. C. Y. Shen, R. C. Chu, C. H. Liou, and S. T. Wang, 'Proton-exchanged $LiNbO_3$ optical waveguides using Toluic acid,' Jpn. J. Appl. Phys., vol. 36, no. 3A, pp.1073-1076, March, 1997 https://doi.org/10.1143/JJAP.36.1073
  9. K. Yamamoto, T. Taniuchi, 'Characte-ristics of pyrophosphoric acid proton-exchanged waveguides in $LiNbO_3$,' J. Appl. Phys., vol. 70, no. 11, pp.December 6663-6668, 1991 https://doi.org/10.1063/1.349838
  10. C. J. G. Kirkby, Properties of lithium niobate, INSPEC, London, p. 140, 1989
  11. E. Hecht, Optics, Addison-Wesley Publishing company, p. 336, 1987